Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS EST Air ; 1(6): 511-524, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38884193

ABSTRACT

Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS ( k M T / k M T S ). In particular, k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.

2.
Chemosphere ; 272: 129859, 2021 06.
Article in English | MEDLINE | ID: mdl-34675448

ABSTRACT

Given the extent to which per- and polyfluoroalkyl substances (PFAS) are used in commercial and industrial applications, the need to evaluate treatment options that reduce environmental emissions and human and ecological exposures of PFAS is becoming more necessary. One specific chemical class of PFAS, fluorotelomer alcohols (FTOHs), have vapor pressures such that a significant fraction is expected to be present in the gas-phase even at ambient temperatures. FTOHs are used in a variety of PFAS applications, including synthesis and material coatings. Using two complementary mass spectrometric methods, the use of calcium oxide (CaO) was examined as a low temperature and potentially low-cost thermal treatment media for removal and destruction of four gas-phase FTOHs of varying molecular weights. This was accomplished by assessing the removal/destruction efficiency of the FTOHs and the formation of fluorinated byproducts as a function of treatment temperature (200 - 800 °C) in the presence of CaO compared to thermal-only destruction. During the treatment process, there is evidence that other PFAS compounds are produced at low temperatures (200 - 600 °C) as the primary FTOH partially degrades. At temperatures above 600 °C, thermal treatment with CaO prevented the formation or removed nearly all these secondary products.


Subject(s)
Alcohols , Fluorocarbons , Calcium Compounds , Environmental Monitoring , Fluorocarbons/analysis , Humans , Oxides , Temperature
3.
Sci Total Environ ; 775: 145592, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34380608

ABSTRACT

Recently, we identified seven novel hydroxy-carboxylic acids resulting from gas-phase reactions of isoprene in the presence of nitrogen oxides (NOx), ozone (O3), and/or hydroxyl radicals (OH). In the present study, we provide evidence that hydroxy-carboxylic acids, namely methyltartaric acids (MTA) are: (1) reliable isoprene tracers, (2) likely produced via rapid peroxy radical hydrogen atom (H) shift reactions (autoxidation mechanism) and analogous alkoxy radical H shifts in low and high NOx environments respectively and (3) representative of aged ambient aerosol in the low NOx regime. Firstly, MTA are reliable tracers of isoprene aerosol because they have been identified in numerous chamber experiments involving isoprene conducted under a wide range of conditions and are absent in the oxidation of mono- and sesquiterpenes. They are also present in numerous samples of ambient aerosol collected during the past 20 years at several locations in the U.S. and Europe. Furthermore, MTA concentrations measured during a year-long field study in Research Triangle Park (RTP), NC in 2003 show a seasonal trend consistent with isoprene emissions and photochemical activity. Secondly, an analysis of chemical ionization mass spectrometer (CIMS) data of several chamber experiments in low and high NOx environments show that highly oxidized molecules (HOMs) derived from isoprene that lead to MTAs may be produced rapidly and considered as early generation isoprene oxidation products in the gas phase. Density functional theory calculations show that rapid intramolecular H shifts involving peroxy and alkoxy radicals possess low barriers for methyl-hydroxy-butenals (MHBs) that may represent precursors for MTA. From these results, a viable rapid H shift mechanism is proposed to occur that produces isoprene derived HOMs like MTA. Finally, an analysis of the mechanism shows that autoxidation-like pathways in low and high NOx may produce HOMs in a few OH oxidation steps like commonly detected methyl tetrol (MT) isoprene tracers. The ratio of MTA/MT in isoprene aerosol is also shown to be significantly greater in field versus chamber samples indicating the importance of such pathways in the atmosphere even for smaller hydrocarbons like isoprene.


Subject(s)
Laboratories , Aerosols , Alcohols , Butadienes , Hemiterpenes , Isomerism
4.
Atmos Environ (1994) ; 259: 1-118538, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34385886

ABSTRACT

This paper uses a machine learning model called a relevance vector machine (RVM) to quantify ozone (O3) and nitrogen oxides (NOx) formation under wintertime conditions. Field study measurements were based on previous work described by Olson et al. (2019), where continuous measurements were reported from a wintertime field study in Utah. RVMs were formulated using either O3 or nitrogen dioxide (NO2) as the output variable. Values of the correlation coefficient (r2) between predicted and measured concentrations were 0.944 for O3 and 0.931 for NO2. RVMs are constructed from the observed measurements and result in sparse model formulations, meaning that only a subset of the data is used to approximate the entire dataset. For this study, the RVM with O3 as the output variable used only 20% of the measurement data while the RVM with NO2 used 16%. RVMs were then used as a predictive model to assess the importance of individual precursors. Using O3 as the output variable, increases in three species resulted in increased O3 concentrations: hydrogen peroxide (H2O2), dinitrogen pentoxide (N2O5), and molecular chlorine (Cl2). For the two termination products measured during the study, nitric acid (HNO3) and formic acid (CH2O2), no change in O3 concentration was observed. Using NO2 as the output variable, only increases in N2O5 resulted in increased NO2 concentrations.

5.
Atmos Environ (1994) ; 2522021 May 01.
Article in English | MEDLINE | ID: mdl-33897265

ABSTRACT

This research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups for the SOA precursor, the number of rings for the SOA precursor, and the presence of dinitrogen pentoxide (N2O5).

6.
Atmos Environ (1994) ; 218: 1-116988, 2019.
Article in English | MEDLINE | ID: mdl-31666799

ABSTRACT

Concentrations of 11 species are reported from continuous measurements taken during a wintertime field study in Utah. Time series data for measured species generally displayed strong diurnal patterns. Six species show a diurnal pattern of daytime maximums (NO, NOy, O3, H2O2, CH2O2, and Cl2), while five species show a diurnal pattern of night time maximums (NO2, HONO, ClNO2, HNO3, and N2O5). Vector autoregression analyses were completed to better understand important species influencing the formation of O3 and NOx. For the species studied, r2 values of predicted versus measured concentrations ranged from 0.82-0.99. Fitting parameters for the autoregressive matrix, Π, indicated the importance of species precursors. In addition, values of fitting parameters for Π were relatively insensitive to data size, with variations generally <10%. Variable causation was quantified using the Granger causation method. Assuming O3 and NOx behave as chemical products, reactants (in order of importance) are as follows: H2O2, N2O5, HONO, and ClNO2.

7.
Environ Sci Technol Lett ; 6(5): 289-293, 2019.
Article in English | MEDLINE | ID: mdl-31179348

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are incorporated into an ever-increasing number of modern products and inevitably enter the environment and ultimately human bodies. Herein, we show that chemical ionization mass spectrometry with iodide reagent ion chemistry is a useful technique for the detection of fluorotelomer alcohols (FTOHs) and other oxygenated PFAS, including per- and polyfluoro carboxylic acids such as hexafluoropropylene oxide dimer acid. This technique offers direct, high-time resolution measurement capability with parts per trillion by volume (nanograms per cubic meter) gas-phase detection limits. Measurements were taken by direct volatilization of samples without prior processing, allowing for fast measurements and reduced sample treatment compared to established PFAS methods. We demonstrate the utility of this technique by sampling volatile and semivolatile PFAS from fluoro additives and fluoro products to quantify levels of FTOHs and identify additional fluorinated compounds for which standards were unavailable.

8.
Atmos Environ (1994) ; 178: 164-172, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29725240

ABSTRACT

Although many volatile organic compounds (VOCs) are regulated to limit air pollution and the consequent health effects, the photooxidation products generally are not. Thus, we examined the mutagenicity in Salmonella TA100 of photochemical atmospheres generated in a steady-state atmospheric simulation chamber by irradiating mixtures of single aromatic VOCs, NOx, and ammonium sulfate seed aerosol in air. The 10 VOCs examined were benzene; toluene; ethylbenzene; o-, m-, and p-xylene; 1,2,4- and 1,3,5-trimethylbenzene; m-cresol; and naphthalene. Salmonella were exposed at the air-agar interface to the generated atmospheres for 1, 2, 4, 8, or 16 h. Dark-control exposures produced non-mutagenic atmospheres, illustrating that the gas-phase precursor VOCs were not mutagenic at the concentrations tested. Under irradiation, all but m-cresol and naphthalene produced mutagenic atmospheres, with potencies ranging from 2.0 (p-xylene) to 10.4 (ethylbenzene) revertants m3 mgC-1 h-1. The mutagenicity was due exclusively to direct-acting late-generation products of the photooxidation reactions. Gas-phase chemical analysis showed that a number of oxidized organic chemical species enhanced during the irradiated exposure experiments correlated (r ≥ 0.81) with the mutagenic potencies of the atmospheres. Molecular formulas assigned to these species indicated that they likely contained peroxy acid, aldehyde, alcohol, and other functionalities.

9.
Aerosol Sci Technol ; 52(9): 992-1004, 2018.
Article in English | MEDLINE | ID: mdl-31686721

ABSTRACT

The relationship between the oxidation state and relative volatility of secondary organic aerosol (SOA) from the oxidation of a wide range of hydrocarbons is investigated using a fast-stepping, scanning thermodenuder interfaced with a high-resolution time-of-flight aerosol mass spectrometer (AMS). SOA oxidation state varied widely across the investigated range of parent hydrocarbons but was relatively stable for replicate experiments using a single hydrocarbon precursor. On average, unit mass resolution indicators of SOA oxidation (e.g., AMS f 43 and f 44) are consistent with previously reported values. Linear regression of H:C vs. O:C obtained from parameterization of f 43 and f 44 and elemental analysis of high-resolution spectra in Van Krevelen space both yield a slope of ~-0.5 across different SOA types. A similar slope was obtained for a distinct subset of toluene/NO x reactions in which the integrated oxidant exposure was varied to alter oxidation. The relative volatility of different SOA types displays similar variability and is strongly correlated with SOA oxidation state ( OS - ). On average, relatively low oxidation and volatility were observed for aliphatic alkene (including terpenes) and n-alkane SOA while the opposite is true for mono- and polycyclic aromatic hydrocarbon SOA. Effective enthalpy for total chamber aerosol obtained from volatility differential mobility analysis is also highly correlated with OS - c indicating a primary role for oxidation levels in determining the volatility of chamber SOA. Effective enthalpies for chamber SOA are substantially lower than those of neat organic standards but are on the order of those obtained for partially oligomerized glyoxal and methyl glyoxal.

10.
Environ Sci Technol ; 51(17): 9911-9919, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28796509

ABSTRACT

Volume concentrations of secondary organic aerosol (SOA) are measured in 139 steady-state, single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet. The response to change in temperature is well predicted through a feedforward Artificial Neural Network. The most parsimonious model, as indicated by Akaike's Information Criterion, Corrected (AIC,C), utilizes 11 input variables, a single hidden layer of 4 tanh activation function nodes, and a single linear output function. This model predicts thermal behavior of single precursor aerosols to less than ±5%, which is within the measurement uncertainty, while limiting the problem of overfitting. Prediction of thermal behavior of SOA can be achieved by a concise number of descriptors of the precursor hydrocarbon including the number of internal and external double bonds, number of methyl- and ethyl- functional groups, molecular weight, and number of ring structures, in addition to the volume of SOA formed, and an indicator of which of four oxidant precursors was used to initiate reactions (NOx photo-oxidation, photolysis of H2O2, ozonolysis, or thermal decomposition of N2O5). Additional input variables, such as chamber volumetric residence time, relative humidity, initial concentration of oxides of nitrogen, reacted hydrocarbon concentration, and further descriptors of the precursor hydrocarbon, including carbon number, number of oxygen atoms, and number of aromatic ring structures, lead to over fit models, and are unnecessary for an efficient, accurate predictive model of thermal behavior of SOA. This work indicates that predictive statistical modeling methods may be complementary to descriptive techniques for use in parametrization of air quality models.


Subject(s)
Aerosols , Hydrogen Peroxide , Oxygen , Air Pollutants , Carbon , Oxidation-Reduction
11.
Environ Sci Technol ; 48(19): 11178-86, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25207961

ABSTRACT

The reactive uptake of isoprene-derived epoxydiols (IEPOX) is thought to be a significant source of atmospheric secondary organic aerosol (SOA). However, the IEPOX reaction probability (γIEPOX) and its dependence upon particle composition remain poorly constrained. We report measurements of γIEPOX for trans-ß-IEPOX, the predominant IEPOX isomer, on submicron particles as a function of composition, acidity, and relative humidity (RH). Particle acidity had the strongest effect. γIEPOX is more than 500 times greater on ammonium bisulfate (γ ∼ 0.05) than on ammonium sulfate (γ ≤ 1 × 10(-4)). We could accurately predict γIEPOX using an acid-catalyzed, epoxide ring-opening mechanism and a high Henry's law coefficient (1.7 × 10(8) M/atm). Suppression of γIEPOX was observed on particles containing both ammonium bisulfate and poly(ethylene glycol) (PEG-300), likely due to diffusion and solubility limitations within a PEG-300 coating, suggesting that IEPOX uptake could be self-limiting. Using the measured uptake kinetics, the predicted atmospheric lifetime of IEPOX is a few hours in the presence of highly acidic particles (pH < 0) but is greater than 25 h on less acidic particles (pH > 3). This work highlights the importance of aerosol acidity for accurately predicting the fate of IEPOX and anthropogenically influenced biogenic SOA formation.


Subject(s)
Aerosols/chemistry , Butadienes/chemistry , Epoxy Compounds/chemistry , Hemiterpenes/chemistry , Pentanes/chemistry , Acids/chemistry , Atmosphere/chemistry , Kinetics , Water/chemistry
12.
Environ Sci Technol ; 48(3): 1618-27, 2014.
Article in English | MEDLINE | ID: mdl-24387143

ABSTRACT

The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl(-)/nNO3(-)). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl(-)/nNO3(-) mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas-particle interactions.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Chlorides/chemistry , Nitrogen Oxides/chemistry , Environmental Monitoring , Kinetics , Models, Theoretical
13.
Environ Sci Technol ; 46(19): 10463-70, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22443276

ABSTRACT

The magnitude and sources of chlorine atoms in marine air remain highly uncertain but have potentially important consequences for air quality in polluted coastal regions. We made continuous measurements of ambient ClNO(2) and Cl(2) concentrations from May 15 to June 8 aboard the Research Vessel Atlantis during the CalNex 2010 field study. In the Los Angeles region, ClNO(2) was more ubiquitous than Cl(2) during most nights of the study period. ClNO(2) and Cl(2) ranged from detection limits at midday to campaign maximum values at night reaching 2100 and 200 pptv, respectively. The maxima were observed in Santa Monica Bay when sampling the Los Angeles urban plume. Cl(2) at times appeared well correlated with ClNO(2), but at other times, there was little to no correlation implying distinct and varying sources. Well-confined Cl(2) plumes were observed, largely independent of ClNO(2), providing support for localized industrial emissions of reactive chlorine. Observations of ClNO(2), Cl(2), and HCl are used to constrain a simple box model that predicts their relative importance as chlorine atom sources in the polluted marine boundary layer. In contrast to the emphasis in previous studies, ClNO(2) and HCl are dominant primary chlorine atom sources for the Los Angeles basin.


Subject(s)
Chlorine/analysis , Nitrites/analysis , Air , Air Pollutants/analysis , Environmental Monitoring/methods , Los Angeles , Nitrites/chemistry , Pacific Ocean , Photolysis
14.
Nature ; 464(7286): 271-4, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20220847

ABSTRACT

Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury and hydrocarbons such as the greenhouse gas methane. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions. We also suggest that a significant fraction of tropospheric chlorine atoms may arise directly from anthropogenic pollutants.


Subject(s)
Atmosphere/chemistry , Chlorine/chemistry , Nitrites/chemistry , Nitrogen/chemistry , Aerosols/chemistry , Air/analysis , Colorado , Models, Chemical , Nitrites/analysis , Nitrogen Oxides/chemistry , Time Factors
15.
J Inorg Biochem ; 100(12): 2150-61, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17070918

ABSTRACT

Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV-visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.


Subject(s)
Imidazoles/metabolism , Metals/metabolism , Oligopeptides/metabolism , Circular Dichroism , Methylosinus , Microscopy, Electron, Transmission , Protein Binding , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...