Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 42(2): 535-541, 2023 02.
Article in English | MEDLINE | ID: mdl-36398848

ABSTRACT

The foliar wash-off coefficient is a parameter used by environmental fate models to estimate the amount of chemical removed from leaf surfaces by rainfall. In the European Union it is used by FOCUS surface water models to estimate soil loadings following rainfall after leaf surfaces have been treated with plant protection products. Currently, a default value of 0.5/cm is assumed for this parameter, although there is provision to provide experimental data to replace this default. The European Food Safety Authority proposed to increase the default parameter value to 1.0/cm. This increases the need for experimental refinement studies. However, no guidance for a harmonized protocol exists to estimate this parameter. We describe the results of a ring-test conducted to start a process of developing a harmonized experimental protocol to measure the foliar wash-off parameters, conducted by several laboratories across Europe. The proposed design uses whole plants (rather than individual leaves) to retain as much realism as possible. The extent of wash-off is then determined by comparison of compound residues in two sets of plants (with and without a defined rainfall event) measured using a fully validated crop residue method. This initial ring test used tebuconazole (Folicur EW 250) sprayed at 100 g ai/ha onto tomato plants at BBCH25. Each laboratory measured the residues before and after a rainfall event of 20 mm/h for 1 h and calculated the percentage of wash-off from these data. There was good agreement across the eight participating laboratories with a mean percentage of wash-off of 66.8% and a 95% confidence interval of ±11.8%. Determination of robust wash-off parameters was therefore considered feasible using the proposed test design. Environ Toxicol Chem 2023;42:535-541. © 2022 SETAC.


Subject(s)
Plants , Rain , Soil , Plant Leaves/chemistry , Food Safety
2.
Plant Cell ; 23(5): 1932-44, 2011 May.
Article in English | MEDLINE | ID: mdl-21540435

ABSTRACT

ATP acts as an extracellular signal molecule in plants. However, the nature of the mechanisms that export this compound into the apoplast are under debate. We identified the protein PM-ANT1 as a candidate transporter able to mediate ATP export. PM-ANT1 joins the mitochondrial carrier family, lacks an N-terminal amino acid extension required for organelle localization, and locates to the plasma membrane. Recombinant PM-ANT1 transports ATP, and the gene is substantially expressed in mature pollen grains. Artificial microRNA (amiRNA) mutants show reduced silique length and less seeds per silique but increased seed weight associated with unchanged pollen viability. Anthers from amiRNA mutants exhibited a normal early development, but stomium breakage is inhibited, leading to impaired anther dehiscence. This results in reduced self-pollination and thus decreased fertilization efficiency. amiRNA pollen grains showed increased intracellular ATP levels but decreased extracellular ATP levels. The latter effects are in line with transport properties of recombinant PM-ANT1, supporting in planta that functional PM-ANT1 resides in the plasma membrane and concur with the PM-ANT1 expression pattern. We assume that PM-ANT1 contributes to ATP export during pollen maturation. ATP export may serve as an extracellular signal required for anther dehiscence and is a novel factor critical for pollination and autogamy.


Subject(s)
Adenosine Triphosphate/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cation Transport Proteins/metabolism , Flowers/growth & development , Membrane Transport Proteins/metabolism , Adenosine Triphosphate/analysis , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport , Cation Transport Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Flowers/genetics , Gene Expression , Gene Expression Regulation, Plant , Membrane Transport Proteins/genetics , MicroRNAs , Molecular Sequence Data , Mutation , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , RNA, Plant/genetics , Recombinant Fusion Proteins , Sequence Alignment , Signal Transduction
3.
J Biol Chem ; 284(45): 31249-59, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19745225

ABSTRACT

The Arabidopsis thaliana L. genome contains 58 membrane proteins belonging to the mitochondrial carrier family. Two mitochondrial carrier family members, here named AtNDT1 and AtNDT2, exhibit high structural similarities to the mitochondrial nicotinamide adenine dinucleotide (NAD(+)) carrier ScNDT1 from bakers' yeast. Expression of AtNDT1 or AtNDT2 restores mitochondrial NAD(+) transport activity in a yeast mutant lacking ScNDT. Localization studies with green fluorescent protein fusion proteins provided evidence that AtNDT1 resides in chloroplasts, whereas only AtNDT2 locates to mitochondria. Heterologous expression in Escherichia coli followed by purification, reconstitution in proteoliposomes, and uptake experiments revealed that both carriers exhibit a submillimolar affinity for NAD(+) and transport this compound in a counter-exchange mode. Among various substrates ADP and AMP are the most efficient counter-exchange substrates for NAD(+). Atndt1- and Atndt2-promoter-GUS plants demonstrate that both genes are strongly expressed in developing tissues and in particular in highly metabolically active cells. The presence of both carriers is discussed with respect to the subcellular localization of de novo NAD(+) biosynthesis in plants and with respect to both the NAD(+)-dependent metabolic pathways and the redox balance of chloroplasts and mitochondria.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Carrier Proteins/metabolism , Chloroplasts/metabolism , Mitochondria/metabolism , NAD/metabolism , Amino Acid Sequence , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Chloroplasts/chemistry , Chloroplasts/genetics , Gene Expression Regulation, Plant , Mitochondria/genetics , Molecular Sequence Data , Protein Transport , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...