Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38726933

ABSTRACT

We investigate how electronic excitations and subsequent dissipative dynamics in the water soluble chlorophyll-binding protein (WSCP) are connected to features in two-dimensional (2D) electronic spectra, thereby comparing results from our theoretical approach with experimental data from the literature. Our calculations rely on third-order response functions, which we derived from a second-order cumulant expansion of the dissipative dynamics involving the partial ordering prescription, assuming a fast vibrational relaxation in the potential energy surfaces of excitons. Depending on whether the WSCP complex containing a tetrameric arrangement of pigments composed of two dimers with weak excitonic coupling between them binds the chlorophyll variant Chl a or Chl b, the resulting linear absorption and circular dichroism spectra and particularly the 2D spectra exhibit substantial differences in line shapes. These differences between Chl a WSCP and Chl b WSCP cannot be explained by the slightly modified excitonic couplings within the two variants. In the case of Chl a WSCP, the assumption of equivalent dimer subunits facilitates a reproduction of substantial features from the experiment by the calculations. In contrast, for Chl b WSCP, we have to assume that the sample, in addition to Chl b dimers, contains a small but distinct fraction of chemically modified Chl b pigments. The existence of such Chl b derivates has been proposed by Pieper et al. [J. Phys. Chem. B 115, 4042 (2011)] based on low-temperature absorption and hole-burning spectroscopy. Here, we provide independent evidence.


Subject(s)
Chlorophyll Binding Proteins , Chlorophyll , Water , Chlorophyll/chemistry , Water/chemistry , Chlorophyll Binding Proteins/chemistry , Spectrum Analysis/methods , Solubility , Circular Dichroism
2.
Sci Rep ; 13(1): 22374, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104211

ABSTRACT

Sustainable production aims at creating products from processes that minimize environmental impact, energy consumption and natural resources. Customers and markets are ever more leaning towards digital, custom, and flexible solutions with lower environmental impact. Hence, Industry 4.0 (I4.0) solutions are increasingly including social and environmental sustainability aspects. We focus on the realization of an infrastructure integrating industrially relevant application modules by combining system reconfigurability and artificial intelligence, towards sustainable production. To meet the final goal of sustainable production, we address four challenges considering flexibility and sustainability in production in a holistic way: (1) developing infrastructural and methodological tools to support companies to explore the potential of I4.0 towards sustainable production; (2) managing the configurability and customization possibilities of products; (3) effectively handling the flexibility provided by a production system with rapid reconfiguration capabilities; (4) integrating hardware and software flexibility by using reconfigurable robotics and machine learning methods. By developing and connecting different application modules, we obtain a physical demonstrator which represents on the one hand an exemplary scenario of reconfigurable and flexible production system; on the other, it enables new research activities and insights with a see, touch & feel approach for industrial and research realities.

3.
Front Cell Dev Biol ; 11: 1287420, 2023.
Article in English | MEDLINE | ID: mdl-38020899

ABSTRACT

The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems.

4.
Mol Pharm ; 20(10): 4984-4993, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37656906

ABSTRACT

Chemical-specific parameters are either measured in vitro or estimated using quantitative structure-activity relationship (QSAR) models. The existing body of QSAR work relies on extracting a set of descriptors or fingerprints, subset selection, and training a machine learning model. In this work, we used a state-of-the-art natural language processing model, Bidirectional Encoder Representations from Transformers, which allowed us to circumvent the need for calculation of these chemical descriptors. In this approach, simplified molecular-input line-entry system (SMILES) strings were embedded in a high-dimensional space using a two-stage training approach. The model was first pre-trained on a masked SMILES token task and then fine-tuned on a QSAR prediction task. The pre-training task learned meaningful high-dimensional embeddings based upon the relationships between the chemical tokens in the SMILES strings derived from the "in-stock" portion of the ZINC 15 dataset─a large dataset of commercially available chemicals. The fine-tuning task then perturbed the pre-trained embeddings to facilitate prediction of a specific QSAR endpoint of interest. The power of this model stems from the ability to reuse the pre-trained model for multiple different fine-tuning tasks, reducing the computational burden of developing multiple models for different endpoints. We used our framework to develop a predictive model for fraction unbound in human plasma (fu,p). This approach is flexible, requires minimum domain expertise, and can be generalized for other parameters of interest for rapid and accurate estimation of absorption, distribution, metabolism, excretion, and toxicity.


Subject(s)
Deep Learning , Quantitative Structure-Activity Relationship , Humans , Machine Learning
5.
Nat Commun ; 14(1): 5633, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704595

ABSTRACT

Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals' internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical 'toy' experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives.


Subject(s)
Actins , Pacemaker, Artificial , Humans , Cluster Analysis , Models, Biological , Motion
6.
Dev Cell ; 57(1): 47-62.e9, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34919802

ABSTRACT

When crawling through the body, leukocytes often traverse tissues that are densely packed with extracellular matrix and other cells, and this raises the question: How do leukocytes overcome compressive mechanical loads? Here, we show that the actin cortex of leukocytes is mechanoresponsive and that this responsiveness requires neither force sensing via the nucleus nor adhesive interactions with a substrate. Upon global compression of the cell body as well as local indentation of the plasma membrane, Wiskott-Aldrich syndrome protein (WASp) assembles into dot-like structures, providing activation platforms for Arp2/3 nucleated actin patches. These patches locally push against the external load, which can be obstructing collagen fibers or other cells, and thereby create space to facilitate forward locomotion. We show in vitro and in vivo that this WASp function is rate limiting for ameboid leukocyte migration in dense but not in loose environments and is required for trafficking through diverse tissues such as skin and lymph nodes.


Subject(s)
Actins/physiology , Leukocytes/physiology , Wiskott-Aldrich Syndrome Protein/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/physiology , Actin-Related Protein 3/metabolism , Actins/metabolism , Animals , Biomechanical Phenomena/physiology , Cell Line , Cell Movement/physiology , Cytoskeletal Proteins/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Protein Binding/physiology , Wiskott-Aldrich Syndrome Protein/genetics
7.
Oxf Open Neurosci ; 1: kvac009, 2022.
Article in English | MEDLINE | ID: mdl-38596707

ABSTRACT

The mammalian neocortex is composed of diverse neuronal and glial cell classes that broadly arrange in six distinct laminae. Cortical layers emerge during development and defects in the developmental programs that orchestrate cortical lamination are associated with neurodevelopmental diseases. The developmental principle of cortical layer formation depends on concerted radial projection neuron migration, from their birthplace to their final target position. Radial migration occurs in defined sequential steps, regulated by a large array of signaling pathways. However, based on genetic loss-of-function experiments, most studies have thus far focused on the role of cell-autonomous gene function. Yet, cortical neuron migration in situ is a complex process and migrating neurons traverse along diverse cellular compartments and environments. The role of tissue-wide properties and genetic state in radial neuron migration is however not clear. Here we utilized mosaic analysis with double markers (MADM) technology to either sparsely or globally delete gene function, followed by quantitative single-cell phenotyping. The MADM-based gene ablation paradigms in combination with computational modeling demonstrated that global tissue-wide effects predominate cell-autonomous gene function albeit in a gene-specific manner. Our results thus suggest that the genetic landscape in a tissue critically affects the overall migration phenotype of individual cortical projection neurons. In a broader context, our findings imply that global tissue-wide effects represent an essential component of the underlying etiology associated with focal malformations of cortical development in particular, and neurological diseases in general.

8.
Proc Natl Acad Sci U S A ; 117(21): 11233-11239, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393637

ABSTRACT

Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...