Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eng Life Sci ; 18(5): 281-286, 2018 May.
Article in English | MEDLINE | ID: mdl-32624907

ABSTRACT

Ejector loop reactors (ELR) are successfully used in industrial chemical processes for gas/liquid reactions. They achieve higher mass transfer rates compared to the stirred-tank reactor (STR) at comparable specific power input. Insufficient oxygen transport and shear stress induced growth inhibition are limiting parameters during microbial fermentation. Due to its better mass transfer characteristics, the ELR was expected to have beneficial effects on biomass and recombinant protein production. One concern, however, was whether the ELR's shear stress characteristics would have a negative effect. This study evaluated the suitability of using the Buss-Loop® Reactor (BLR), one of the most advanced ELR technologies, as a bioreactor. The well-studied STR was used as a reference. A lab scale BLR was adapted for microbial fermentation. Mass transfer rates and specific power inputs were within the same order of magnitude in the ELR and the reference STR. Maximum k L a values of 207 and 205 h-1 at power inputs of 6.9 and 9.7 W/L were measured in the ELR and STR, respectively. During batch fermentation of Escherichia coli K12 MG1655, maximum cell densities were higher in the ELR (OD600 of 22) than in the STR (OD600 of 18). Green fluorescence protein (GFP) production with pGS1 was comparable; however, more GFP was released into the media in the ELR. This indicates higher cell disruption compared to the STR. Despite this drawback of the first prototype, our work clearly demonstrates the potential of the ELR as a system for microbial fermentations.

2.
Chimia (Aarau) ; 71(7): 525-527, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28779777

ABSTRACT

This article provides an overview of activities in the fields of continuous processes, flow chemistry and microreactors at the Universities of Applied Sciences in Switzerland.

3.
Bioprocess Biosyst Eng ; 36(7): 927-35, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23010724

ABSTRACT

The evaluation of mixing quality is an important factor for improving the geometry of stirred-tank reactors and impellers used in bioprocess engineering applications, such as the enzymatic hydrolysis of plant materials. Homogeneity depends on different factors, including the stirrer type and the reactor type (e.g., ratio of diameter/height, ratio of impeller tip diameter/reactor diameter) with or without baffles. This study compares two impellers for enzymatic hydrolysis of suspensions of biomass particles on a milliliter scale. Both impellers were derived from industrially relevant geometries, such as blade and grid stirrers, although the geometry of the second stirrer was slightly modified to an asymmetric shape. The stirrers were investigated with different stirrer-reactor configurations. This was done experimentally and with the aid of computational fluid dynamics. The flow field, mixing numbers, power characteristics and initial conversion rates of sugars were considered to compare the two stirrers. The simulated mixing numbers and power characteristics in baffled and unbaffled milliliter-scale reactors were found to be in good agreement with the measured mixing times and power consumption. The mixing numbers required to reach homogeneity were much higher for the symmetric impeller and remained at least twice as high as the mixing numbers required when using the asymmetric impeller. The highest initial sugar releases from milled corn stover suspensions were achieved with the asymmetric impeller shape. Regardless of the differences in the flow fields or mixing times, diverging enzymatic sugar releases could be confirmed for Newtonian media only.


Subject(s)
Biomass , Enzymes/metabolism , Bioreactors , Hydrolysis
4.
Bioresour Technol ; 106: 138-46, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22206921

ABSTRACT

Many factors strongly influence the enzymatic hydrolysis of biomass to fermentable sugars (feedstock composition, pretreatment, enzymes and enzyme loading). In order to optimize the reaction conditions for the hydrolysis of biomass, an accurate high-throughput bioprocess development tool is mandatory, which enables a parallelization and an easy scale-up. New S-shaped impellers were developed for magnetically inductive driven stirred-tank bioreactors at a 10mL-scale. An efficient and reproducible homogenization was shown at 20% w/w solids loading of microcrystalline cellulose and at, 4-10% with wheat straw in 48 parallel operated stirred-tank bioreactors. The scale-up was successfully validated for the enzymatic hydrolysis of wheat straw suspensions and microcrystalline cellulose mixtures by application of a cellulase complex at a milliliter- and liter-scale. As an example, the parallel stirred-tank bioreactor system was applied for the evaluation of enzymatic batch hydrolyses of plant materials with varying pretreatments.


Subject(s)
Biomass , Bioreactors , Biotechnology/instrumentation , Biotechnology/methods , Enzymes/metabolism , Miniaturization/instrumentation , Cellulase/metabolism , Crystallization , Glucose/analysis , Hydrolysis , Suspensions , Time Factors , Triticum/chemistry , Waste Products/analysis , Xylose/analysis , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...