Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EPMA J ; : 1-39, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37359998

ABSTRACT

Background: Concern exists that noninvasive ventilation (NIV) may promote ventilation-induced lung injury(VILI) and worsen outcome in acute hypoxemic respiratory failure (AHRF). Different individual ventilatory variables have been proposed to predict clinical outcomes, with inconsistent results.Mechanical power (MP), a measure of the energy transfer rate from the ventilator to the respiratory system during mechanical ventilation, might provide solutions for this issue in the framework of predictive, preventive and personalized medicine (PPPM). We explored (1) the impact of ventilator-delivered MP normalized to well-aerated lung (MPWAL) on physio-anatomical and clinical responses to NIV in COVID-19-related AHRF and (2) the effect of prone position(PP) on MPWAL. Methods: We analyzed 216 noninvasively ventilated COVID-19 patients (108 patients receiving PP + NIV and 108 propensity score-matched patients receiving supine NIV) with moderate-to-severe(paO2/FiO2 ratio < 200) AHRF enrolled in the PRO-NIV controlled non-randomized study (ISRCTN23016116).Quantification of differentially aerated lung volumes by lung ultrasonography (LUS) was validated against CT scans. Respiratory parameters were hourly recorded, ABG were performed 1 h after each postural change. Time-weighed average values of ventilatory variables, including MPWAL, and gas exchange parameters (paO2/FiO2 ratio, dead space indices) were calculated for each ventilatory session. LUS and circulating biomarkers were assessed daily. Results: Compared with supine position, PP was associated with a 34% MPWAL reduction, attributable largely to an absolute MP reduction and secondly to an enhanced lung reaeration.Patients receiving a high MPWAL during the 1st 24 h of NIV [MPWAL(day 1)] had higher 28-d NIV failure (HR = 4.33,95%CI:3.09 - 5.98) and death (HR = 5.17,95%CI: 3.01 - 7.35) risks than those receiving a low MPWAL(day 1).In Cox multivariate analyses, MPWAL(day 1) remained independently associated with 28-d NIV failure (HR = 1.68,95%CI:1.15-2.41) and death (HR = 1.69,95%CI:1.22-2.32).MPWAL(day 1) outperformed other power measures and ventilatory variables as predictor of 28-d NIV failure (AUROC = 0.89;95%CI:0.85-0.93) and death (AUROC = 0.89;95%CI:0.85-0.94).MPWAL(day 1) predicted also gas exchange, ultrasonographic and inflammatory biomarker responses, as markers of VILI, on linear multivariate analysis. Conclusions: In the framework of PPPM, early bedside MPWAL calculation may provide added value to predict response to NIV and guide subsequent therapeutic choices i.e. prone position adoption during NIV or upgrading to invasive ventilation, to reduce hazardous MPWAL delivery, prevent VILI progression and improve clinical outcomes in COVID-19-related AHRF. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-023-00325-5.

2.
Crit Care Med ; 51(9): 1185-1200, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37232709

ABSTRACT

OBJECTIVES: To study: 1) the effect of prone position (PP) on noninvasive ventilation (NIV)-delivered mechanical power (MP) and 2) the impact of MP on physio-anatomical and clinical responses to early versus late PP in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. DESIGN: Nonrandomized trial with inverse probability of treatment weighted-matched groups. SETTING: HUMANITAS Gradenigo Sub-ICU. PATIENTS: One hundred thirty-eight SARS-CoV-2 pneumonia patients with moderate-to-severe acute hypoxemic respiratory failure (Pa o2 /F io2 ratio < 200 mm Hg) receiving NIV from September 1, 2020, to February 28, 2021 (Ethics approval: ISRCTN23016116). INTERVENTIONS: Early PP or late PP or supine position. MEASUREMENTS AND MAIN RESULTS: Respiratory parameters were hourly recorded. Time-weighted average MP values were calculated for each ventilatory session. Gas exchange parameters and ventilatory ratio (VR) were measured 1 hour after each postural change. Lung ultrasonographic scores and circulating biomarkers were assessed daily. MP delivered during the initial 24 hours of NIV (MP [first 24 hr]) was the primary exposure variable. Primary outcomes: 28-day endotracheal intubation and death. Secondary outcomes: oxygen-response, C o2 -response, ultrasonographic, and systemic inflammatory biomarker responses after 24 hours of NIV. Fifty-eight patients received early PP + NIV, 26 late PP + NIV, and 54 supine NIV. Early PP group had lower 28-day intubation and death than late PP (hazard ratio [HR], 0.35; 95% CI, 0.19-0.69 and HR, 0.26; 95% CI, 0.07-0.67, respectively) and supine group. In Cox multivariate analysis, (MP [first 24 hr]) predicted 28-day intubation (HR, 1.70; 95% CI, 1.25-2.09; p = 0.009) and death (HR, 1.51; 95% CI, 1.19-1.91; p = 0.007). Compared with supine position, PP was associated with a 35% MP reduction. VR, ultrasonographic scores, and inflammatory biomarkers improved after 24 hours of NIV in the early PP, but not in late PP or supine group. A MP (first 24 hr) greater than or equal to 17.9 J/min was associated with 28-day death (area under the curve, 0.92; 95% CI, 0.88-0.96; p < 0.001); cumulative hours of MP greater than or equal to 17.9 J/min delivered before PP initiation attenuated VR, ultrasonographic, and biomarker responses to PP. CONCLUSIONS: MP delivered by NIV during initial 24 hours predicts clinical outcomes. PP curtails MP, but cumulative hours of NIV with MP greater than or equal to 17.9 J/min delivered before PP initiation attenuate the benefits of PP.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , COVID-19/therapy , Lung , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...