Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Brain Connect ; 12(7): 602-616, 2022 09.
Article in English | MEDLINE | ID: mdl-34428937

ABSTRACT

Introduction: Comorbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) are common in military service members. The aim of this study is to investigate brain metabolic interrelationships in service members with and without persistent PTSD symptoms after mTBI by using 18F-fluorodeoxyglucose (FDG) positron emission tomography. Methods: Service members (n = 408) diagnosed with mTBI were studied retrospectively. Principal component analysis was applied to identify latent metabolic systems, and the associations between metabolic latent systems and self-report measures of post-concussive and PTSD symptoms were evaluated. Participants were divided into two groups based on DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders, fourth edition-Text Revision) criteria for PTSD, and structural equation modeling was performed to test a priori hypotheses on metabolic interrelationships among the brain regions in the cortico-limbic circuitry responsible for top-down control and bottom-up emotional processing. The differences in metabolic interrelationships between age-matched PTSD-absent (n = 204) and PTSD-present (n = 204) groups were evaluated. Results: FDG uptake in the temporo-limbic system was positively correlated with post-concussive and hyperarousal symptoms. For the bottom-up emotional processing, the insula and amygdala-hippocampal complex in the PTSD-present group had stronger metabolic interrelationships with the bilateral rostral anterior cingulate, left lingual, right lateral occipital, and left superior temporal cortices, but a weaker relationship with the right precuneus cortex, compared with the PTSD-absent group. For the top-down control, the PTSD-present group had decreased metabolic engagements of the dorsolateral prefrontal cortex on the amygdala. Discussion: Our results suggest altered metabolic interrelationships in the cortico-limbic circuitry in mTBI subjects with persistent PTSD symptoms, which may underlie the pathophysiological mechanisms of comorbid mTBI and PTSD. Impact statement This is the first 18F-fluorodeoxyglucose positron emission tomography study to investigate brain metabolic interrelationships in service members with persistent post-traumatic stress disorder (PTSD) symptoms after mild traumatic brain injury (mTBI). We identified that the temporo-limbic metabolic system was associated with post-concussive and hyperarousal symptoms. Further, brain metabolic interrelationships in the cortico-limbic circuitry were altered in mTBI subjects with significant PTSD symptoms compared with those without them.


Subject(s)
Brain Concussion , Military Personnel , Stress Disorders, Post-Traumatic , Brain/diagnostic imaging , Brain Concussion/complications , Brain Concussion/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Military Personnel/psychology , Retrospective Studies
2.
Neurotrauma Rep ; 2(1): 245-254, 2021.
Article in English | MEDLINE | ID: mdl-34223555

ABSTRACT

This study aimed to determine whether magnetic resonance imaging (MRI) white matter hyperintensities (WMHs) are associated with symptom reporting and/or cognitive performance in 1202 active-duty service members with prior single or multiple mild traumatic brain injury (mTBI). Patients with mTBI evaluated at the National Intrepid Center of Excellence (NICoE) at Walter Reed National Military Medical Center (WRNMMC) were divided into those with (n = 632) and without (n = 570) WMHs. The groups were compared on several self-report scales including the Neurobehavioral Symptom Inventory (NSI), Post-Traumatic Stress Disorder (PTSD) Checklist-Civilian Version (PCL-C), Satisfaction with Life Scale (SWLS), and Short Form-36 Health Survey (SF-36). They were also compared on several neuropsychological measures, including tests of attention, working memory, learning and memory, executive functioning, and psychomotor functioning. After correction for multiple comparisons, there were no significant differences between the two groups on any self-reported symptom scale or cognitive test. When comparing a subgroup with the highest (20+) WMH burden (n = 60) with those with no WMHs (n = 60; matched on age, education, sex, race, rank, and TBI number), only SF-36 Health Change significantly differed between the subgroups; the multiple WMH subgroup reported worsening health over the past year (t[53] = 3.52, p = 0.001, d = 0.67) compared with the no WMH subgroup. These findings build on prior research suggesting total WMHs are not associated with significant changes in self-reported symptoms or cognitive performance in patients with a remote history of mTBI. As such, clinicians are encouraged to use caution when reporting such imaging findings.

3.
Clin Neurophysiol ; 130(10): 1869-1881, 2019 10.
Article in English | MEDLINE | ID: mdl-31408789

ABSTRACT

OBJECTIVE: To investigate the relationship between the severity of PTSD symptoms, modulation of alpha band oscillations, and behavioral performance in a working memory task. METHODS: Magnetoencephalography data were recorded in 35 participants with combat exposure and various degrees of PTSD symptom severity while they performed a modified Sternberg working memory task: briefly presented sets of two or six letters had to be held in memory and participants indicated whether subsequent probe letters were present or absent from these sets. RESULTS: PTSD scores were positively correlated with the false positive rate in the high memory load condition. Higher rates of false recognition were associated with negative probes that were seen in recent previous trials (negative probe recency effect) or were physically similar with the list letters. The relative alpha band power in the left middle frontal gyrus was negatively correlated with both PTSD scores and false positive rates. CONCLUSIONS: Reduced task specific modulation of alpha band oscillations in left middle frontal cortex may reflect alterations in the functions of pattern separation and suppression of memory traces for irrelevant or no longer relevant information in PTSD. SIGNIFICANCE: The lower amplitude of prefrontal alpha band oscillations may represent an important physiological basis for core PTSD symptoms and can provide a target for interventions to augment response to treatment.


Subject(s)
Alpha Rhythm/physiology , Combat Disorders/physiopathology , Magnetoencephalography/methods , Memory, Short-Term/physiology , Military Personnel , Stress Disorders, Post-Traumatic/physiopathology , Adult , Combat Disorders/diagnostic imaging , Combat Disorders/psychology , Follow-Up Studies , Humans , Male , Middle Aged , Military Personnel/psychology , Reaction Time/physiology , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/psychology
4.
Neuroimage Clin ; 22: 101793, 2019.
Article in English | MEDLINE | ID: mdl-30939340

ABSTRACT

In the military, explosive blasts are a significant cause of mild traumatic brain injuries (mTBIs). The symptoms associated with blast mTBIs causes significant economic burdens and a diminished quality of life for many service members. At present, the distinction of the injury mechanism (blast versus non-blast) may not influence TBI diagnosis. However, using noninvasive imaging, this study reveals significant distinctions between the blast and non-blast TBI mechanisms. A cortical whole-brain thickness analysis was performed using structural high-resolution T1-weighted MRI to identify the effects of blasts in persistent mTBI (pmTBI) subjects. A total of 41 blast pmTBI subjects were individually age- and gender-matched to 41 non-blast pmTBI subjects. Using FreeSurfer, cortical thickness was quantified for the blast group, relative to the non-blast group. Cortical thinning was identified within the blast mTBI group, in two clusters bilaterally. In the left hemisphere, the cluster overlapped with the lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, superior frontal, rostral anterior cingulate and frontal pole cortices (p < 0.02, two-tailed, size = 1680 mm2). In the right hemisphere, the cluster overlapped with the lateral orbitofrontal, rostral middle frontal, medial orbitofrontal, pars orbitalis, pars triangularis and insula cortices (p < 0.002, two-tailed, cluster size = 2453 mm2). Self-report assessments suggest significant differences in the Post-Traumatic Stress Disorder Checklist-Civilian Version (p < 0.05, Bonferroni-corrected) and the Neurobehavioral Symptom Inventory (p < 0.01, uncorrected) between the blast and non-blast mTBI groups. These results suggest that blast may cause a unique injury pattern related to a reduction in cortical thickness within specific brain regions which could affect symptoms. No other study has found cortical thickness difference between blast and non-blast mTBI groups and further replication is needed to confirm these initial observations.


Subject(s)
Blast Injuries/pathology , Brain Concussion/pathology , Cerebral Cortex/pathology , Neuroimaging/methods , Stress Disorders, Post-Traumatic/pathology , Adult , Blast Injuries/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Concussion/etiology , Cerebral Cortex/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Military Personnel , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/physiopathology
5.
J Neurotrauma ; 36(14): 2213-2221, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30760096

ABSTRACT

Brain venous volume above the lateral ventricle in military patients with traumatic brain injury (TBI) was assessed using two segmentation approaches on susceptibility weighted images (SWI) and quantitative susceptibility maps (QSM). This retrospective study included a total of 147 subjects: 14 patients with severe TBI; 38 patients with moderate TBI, 58 patients with mild TBI (28 with blast-related injuries and 30 with non-blast-related injuries), and 37 control subjects without history of TBI. Using the multiscale vessel enhancement filter on SWI images, patients with severe TBI demonstrated significantly higher segmented venous volumes compared with controls. Using a threshold approach on QSM images, TBI patients with different severities all demonstrated increased segmented volumes compared with control subjects: in the whole brain (severe, p = 0.001; moderate, p = 0.008; mild, p = 0.042, compared with controls), in the left hemisphere (severe, p = 0.01; moderate, p = 0.038, compared with controls), in the right hemisphere (severe, p = 0.001; moderate, p = 0.013; mild, p = 0.027, compared with controls). While segmented volumes on SWI appear to overlay directly on the visualized venous structures, the QSM-derived segments also encompass some perivascular and deep white matter areas. This might represent the damage in the perivascular regions associated with iron deposition or astroglial scarring.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain/blood supply , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Neuroimaging/methods , Adult , Brain/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Military Personnel , Retrospective Studies
6.
Front Neurol ; 9: 6, 2018.
Article in English | MEDLINE | ID: mdl-29403431

ABSTRACT

Sleep-related hypermotor epilepsy (SHE) (previously frontal lobe epilepsy) is a rare seizure disorder commonly misdiagnosed or unrecognized, causing negative patient sequelae. While usually reported in familial studies, it is more commonly acquired. Diagnosis is a challenge due to its low incidence in comparison with the more common sleep disorders or psychogenic etiologies in the differential diagnosis. Diagnosis is scaled on degree of certainty based on described or clinically documented semiology, with video EEG as a helpful, but not necessary, adjunct. Current treatment is similar to other focal epilepsies. We studied a 36-year-old active duty male soldier who presented with 2 years of predominantly sleep related, abrupt, short, and anamnestic hyperkinetic movements with unstructured vocalizations. Prior workup included non-contributory video electroencephalograph (EEG) and polysomnography as well as normal brain magnetic resonance imaging (MRI). Treatments for presumed psychiatric and parasomnia disturbances were not effective in establishing diagnosis or relief. Evaluation at our tertiary, multidisciplinary care institution recorded events consistent with the diagnosis of clinical SHE. He was enrolled in an advanced multishell diffusion-weighted imaging MRI research study to evaluate white matter tracts, given his history of mild, repetitive, non-penetrating traumatic brain injury, not otherwise requiring hospitalization. Multishell diffusion MRI tractography found changes not previously described in the right frontal lobe white matter tracts. These changes were consistent with neurological localization and serve as a potential nidus for this patient's seizure disorder. Misdiagnosis of SHE can result in detrimental biopsychosocial sequelae of untreated epilepsy, unnecessary or harmful intervention, or the stigmata of a behavioral disorder. Further investigation into diagnosis and etiology of acquired SHE is needed. Assessment for white matter abnormalities can potentially provide information into pathogenesis of epilepsy disorders.

7.
Neuroimage Clin ; 15: 741-752, 2017.
Article in English | MEDLINE | ID: mdl-28702351

ABSTRACT

Patients with a history of mild traumatic brain injury (mTBI) and objective cognitive deficits frequently experience word finding difficulties in normal conversation. We sought to improve our understanding of this phenomenon by determining if the scores on standardized cognitive testing are correlated with measures of brain activity evoked in a word retrieval task (confrontational picture naming). The study participants (n = 57) were military service members with a history of mTBI. The General Memory Index (GMI) determined after administration of the Rivermead Behavioral Memory Test, Third Edition, was used to assign subjects to three groups: low cognitive performance (Group 1: GMI ≤ 87, n = 18), intermediate cognitive performance (Group 2: 88 ≤ GMI ≤ 99, n = 18), and high cognitive performance (Group 3: GMI ≥ 100, n = 21). Magnetoencephalography data were recorded while participants named eighty pictures of common objects. Group differences in evoked cortical activity were observed relatively early (within 200 ms from picture onset) over a distributed network of left hemisphere cortical regions including the fusiform gyrus, the entorhinal and parahippocampal cortex, the supramarginal gyrus and posterior part of the superior temporal gyrus, and the inferior frontal and rostral middle frontal gyri. Differences were also present in bilateral cingulate cortex and paracentral lobule, and in the right fusiform gyrus. All differences reflected a lower amplitude of the evoked responses for Group 1 relative to Groups 2 and 3. These findings may indicate weak afferent inputs to and within an extended cortical network including association cortex of the dominant hemisphere in patients with low cognitive performance. The association between word finding difficulties and low cognitive performance may therefore be the result of a diffuse pathophysiological process affecting distributed neuronal networks serving a wide range of cognitive processes. These findings also provide support for a parallel processing model of lexical access.


Subject(s)
Brain Concussion/physiopathology , Cerebral Cortex/physiopathology , Cognition/physiology , Speech/physiology , Adult , Female , Humans , Magnetoencephalography , Male , Mental Recall/physiology
8.
Brain Connect ; 7(4): 236-249, 2017 05.
Article in English | MEDLINE | ID: mdl-28316248

ABSTRACT

The relationship between post-traumatic stress disorder (PTSD) and chronic symptoms of mild traumatic brain injury (mTBI) is difficult to discern and poorly understood. An accurate differential diagnosis, assessment, and treatment of mTBI and PTSD are challenging due to significant symptom overlap and the absence of clearly established biomarkers. The objective of this work is to examine how post-traumatic stress influences task-free default mode network in chronic mTBI subjects. Control subjects (N = 44) were compared with chronic mTBI subjects with low (N = 58, PTSD Checklist-Civilian Version [PCL-C] total < 30), medium (N = 124, PCL-C total = 31-49), and high (N = 105, PCL-C total ≥ 60) post-traumatic stress symptoms (PTSS). The results indicate significant differences in Brodmann area 10 for all mTBI subject groups, indicating potential mTBI-related disruptions with regulation of emotions and decision-making. The effects of PTSS were observed in the anterior cingulate and parahippocampus, suggesting possible disruptions pertaining to memory regulation, encoding, and retrieval. The overall results indicate the presence of aberrant connectivity patterns between controls and chronic mTBI subjects with low, medium, and high PTSS. Furthermore, the findings suggest a disruption in attention relating to a network of brain regions involved with emotional regulation and memory coding, rather than a fear-related response. Taken together, the results suggest these regions form a network that could be a target for future research pertaining to PTSD and chronic mTBI. Furthermore, the use of clinical measures, task-based imaging studies, or multimodal imaging could help further elucidate specific neural correlates of PTSS and mTBI.


Subject(s)
Brain Concussion/physiopathology , Brain/physiopathology , Military Personnel , Stress Disorders, Post-Traumatic/physiopathology , Adult , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Brain Concussion/psychology , Case-Control Studies , Chronic Disease , Decision Making , Emotions , Female , Functional Neuroimaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Parahippocampal Gyrus/diagnostic imaging , Parahippocampal Gyrus/physiopathology , Self-Control , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/psychology
9.
Hum Brain Mapp ; 38(1): 352-369, 2017 01.
Article in English | MEDLINE | ID: mdl-27629984

ABSTRACT

The aim of this study was to apply recently developed automated fiber segmentation and quantification methods using diffusion tensor imaging (DTI) and DTI-based deterministic and probabilistic tractography to access local and global diffusion changes in blast-induced mild traumatic brain injury (bmTBI). Two hundred and two (202) male active US service members who reported persistent post-concussion symptoms for more than 6 months after injury were recruited. An additional forty (40) male military controls were included for comparison. DTI results were examined in relation to post-concussion and post-traumatic stress disorder (PTSD) symptoms. No significant group difference in DTI metrics was found using voxel-wise analysis. However, group comparison using tract profile analysis and tract specific analysis, as well as single subject analysis using tract profile analysis revealed the most prominent white matter microstructural injury in chronic bmTBI patients over the frontal fiber tracts, that is, the front-limbic projection fibers (cingulum bundle, uncinate fasciculus), the fronto-parieto-temporal association fibers (superior longitudinal fasciculus), and the fronto-striatal pathways (anterior thalamic radiation). Effects were noted to be sensitive to the number of previous blast exposures, with a negative association between fractional anisotropy (FA) and time since most severe blast exposure in a subset of the multiple blast-exposed group. However, these patterns were not observed in the subgroups classified using macrostructural changes (T2 white matter hyperintensities). Moreover, post-concussion symptoms and PTSD symptoms, as well as neuropsychological function were associated with low FA in the major nodes of compromised neurocircuitry. Hum Brain Mapp 38:352-369, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Blast Injuries/complications , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/pathology , Brain Mapping , Nerve Fibers/pathology , Nerve Net/pathology , Neural Pathways/pathology , Adult , Anisotropy , Brain Injuries, Traumatic/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Neuropsychological Tests , Young Adult
10.
Clin Neurophysiol ; 127(9): 3075-3085, 2016 09.
Article in English | MEDLINE | ID: mdl-27472543

ABSTRACT

OBJECTIVE: To determine if changes in cortical alpha-band power in patients with mild traumatic brain injury (mTBI) are associated with the severity of their post-traumatic stress disorder (PTSD) symptoms, and if injury severity and level of exposure to psychologically traumatic events are predictors of these electrophysiological changes. METHODS: Resting-state magnetoencephalographic recordings were analyzed in 32 patients with mTBI. Alpha-band power was estimated for each patient in 68 cortical regions and was compared between groups of patients with low versus high PTSD symptoms severity. RESULTS: Participants with high PTSD symptom severity showed reduced alpha-band power bilaterally in the superior and middle frontal gyri and frontal poles, and in the left inferior frontal gyrus. Alpha-band power in bilateral middle frontal gyri and frontal poles was negatively correlated with scores reflecting symptoms of emotional numbing. Loss of consciousness (LOC) associated with mTBI and level of exposure to psychologically traumatic events were predictors of decreased prefrontal alpha-band power in some of these regions. CONCLUSION: Altered prefrontal alpha-band activity, shown to be partly explained by mTBI-related LOC, is associated with PTSD symptoms severity. SIGNIFICANCE: Our findings will guide future studies addressing the electrophysiological mechanisms underlying a higher incidence of PTSD in patients with mTBI.


Subject(s)
Alpha Rhythm , Brain Concussion/physiopathology , Magnetoencephalography/methods , Military Personnel , Prefrontal Cortex/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Alpha Rhythm/physiology , Brain Concussion/epidemiology , Brain Concussion/psychology , Cross-Sectional Studies , Humans , Male , Military Personnel/psychology , Self Report , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Unconsciousness/epidemiology , Unconsciousness/physiopathology , Unconsciousness/psychology
11.
Brain Connect ; 6(5): 389-402, 2016 06.
Article in English | MEDLINE | ID: mdl-26956452

ABSTRACT

In the global war on terror, the increased use of improvised explosive devices has resulted in increased incidence of blast-related mild traumatic brain injury (mTBI). Diagnosing mTBI is both challenging and controversial due to heterogeneity of injury location, trauma intensity, transient symptoms, and absence of focal biomarkers on standard clinical imaging modalities. The goal of this study is to identify a brain biomarker that is sensitive to mTBI injury. Research suggests the thalamus may be sensitive to changes induced by mTBI. A significant number of connections to and from various brain regions converge at the thalamus. In addition, the thalamus is involved in information processing, integration, and regulation of specific behaviors and mood. In this study, changes in task-free thalamic networks as quantified by graph theory measures in mTBI blast (N = 186), mTBI nonblast (N = 80), and controls (N = 21) were compared. Results show that the blast mTBI group had significant hyper-connectivity compared with the controls and nonblast mTBI group. However, after controlling for post-traumatic stress symptoms (PTSS), the blast mTBI group was not different from the controls, but the nonblast mTBI group showed significant hypo-connectivity. The results suggest that there are differences in the mechanisms of injury related to mTBI as reflected in the architecture of the thalamic networks. However, the effect of PTSS and its relationship to mTBI is difficult to distinguish and warrants more research.


Subject(s)
Brain Concussion/physiopathology , Thalamus/physiology , Adult , Biomarkers , Brain/pathology , Brain Concussion/etiology , Brain Injuries/diagnosis , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/pathology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Male , Military Personnel , Neuropsychological Tests , Rest/physiology , Thalamus/injuries , Thalamus/metabolism
12.
Radiology ; 278(2): 536-45, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26371749

ABSTRACT

PURPOSE: To detect cerebral microhemorrhages in military service members with chronic traumatic brain injury by using susceptibility-weighted magnetic resonance (MR) imaging. The longitudinal evolution of microhemorrhages was monitored in a subset of patients by using quantitative susceptibility mapping. MATERIALS AND METHODS: The study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants underwent two-dimensional conventional gradient-recalled-echo MR imaging and three-dimensional flow-compensated multiecho gradient-recalled-echo MR imaging (processed to generate susceptibility-weighted images and quantitative susceptibility maps), and a subset of patients underwent follow-up imaging. Microhemorrhages were identified by two radiologists independently. Comparisons of microhemorrhage number, size, and magnetic susceptibility derived from quantitative susceptibility maps between baseline and follow-up imaging examinations were performed by using the paired t test. RESULTS: Among the 603 patients, cerebral microhemorrhages were identified in 43 patients, with six excluded for further analysis owing to artifacts. Seventy-seven percent (451 of 585) of the microhemorrhages on susceptibility-weighted images had a more conspicuous appearance than on gradient-recalled-echo images. Thirteen of the 37 patients underwent follow-up imaging examinations. In these patients, a smaller number of microhemorrhages were identified at follow-up imaging compared with baseline on quantitative susceptibility maps (mean ± standard deviation, 9.8 microhemorrhages ± 12.8 vs 13.7 microhemorrhages ± 16.6; P = .019). Quantitative susceptibility mapping-derived quantitative measures of microhemorrhages also decreased over time: -0.85 mm(3) per day ± 1.59 for total volume (P = .039) and -0.10 parts per billion per day ± 0.14 for mean magnetic susceptibility (P = .016). CONCLUSION: The number of microhemorrhages and quantitative susceptibility mapping-derived quantitative measures of microhemorrhages all decreased over time, suggesting that hemosiderin products undergo continued, subtle evolution in the chronic stage.


Subject(s)
Brain Injuries/complications , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/etiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Military Personnel , Adolescent , Adult , Chronic Disease , Female , Humans , Male , Middle Aged
13.
Radiology ; 279(1): 207-15, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26669604

ABSTRACT

PURPOSE: To describe the initial neuroradiology findings in a cohort of military service members with primarily chronic mild traumatic brain injury (TBI) from blast by using an integrated magnetic resonance (MR) imaging protocol. MATERIALS AND METHODS: This study was approved by the Walter Reed National Military Medical Center institutional review board and is compliant with HIPAA guidelines. All participants were military service members or dependents recruited between August 2009 and August 2014. There were 834 participants with a history of TBI and 42 participants in a control group without TBI (not explicitly age- and sex-matched). MR examinations were performed at 3 T primarily with three-dimensional volume imaging at smaller than 1 mm(3) voxels for the structural portion of the examination. The structural portion of this examination, including T1-weighted, T2-weighted, before and after contrast agent administrtion T2 fluid attenuation inversion recovery, and susceptibility-weighted images, was evaluated by neuroradiologists by using a modified version of the neuroradiology TBI common data elements (CDEs). Incident odds ratios (ORs) between the TBI participants and a comparison group without TBI were calculated. RESULTS: The 834 participants were diagnosed with predominantly chronic (mean, 1381 days; median, 888 days after injury) and mild (92% [768 of 834]) TBI. Of these participants, 84.2% (688 of 817) reported one or more blast-related incident and 63.0% (515 of 817) reported loss of consciousness at the time of injury. The presence of white matter T2-weighted hyperintense areas was the most common pathologic finding, observed in 51.8% (432 of 834; OR, 1.75) of TBI participants. Cerebral microhemorrhages were observed in a small percentage of participants (7.2% [60 of 834]; OR, 6.64) and showed increased incidence with TBI severity (P < .001, moderate and severe vs mild). T2-weighted hyperintense areas and microhemorrhages did not collocate by visual inspection. Pituitary abnormalities were identified in a large proportion (29.0% [242 of 834]; OR, 16.8) of TBI participants. CONCLUSION: Blast-related injury and loss of consciousness is common in military TBI. Structural MR imaging demonstrates a high incidence of white matter T2-weighted hyperintense areas and pituitary abnormalities, with a low incidence of microhemorrhage in the chronic phase.


Subject(s)
Blast Injuries/complications , Brain Injuries/diagnosis , Brain Injuries/etiology , Magnetic Resonance Imaging/methods , Military Personnel , Adult , Female , Humans , Imaging, Three-Dimensional , Injury Severity Score , Male , Prospective Studies , United States
14.
Neuroimage ; 126: 151-63, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26638985

ABSTRACT

The purpose of this work is to develop a framework for single-subject analysis of diffusion tensor imaging (DTI) data. This framework is termed Tract Orientation and Angular Dispersion Deviation Indicator (TOADDI) because it is capable of testing whether an individual tract as represented by the major eigenvector of the diffusion tensor and its corresponding angular dispersion are significantly different from a group of tracts on a voxel-by-voxel basis. This work develops two complementary statistical tests based on the elliptical cone of uncertainty, which is a model of uncertainty or dispersion of the major eigenvector of the diffusion tensor. The orientation deviation test examines whether the major eigenvector from a single subject is within the average elliptical cone of uncertainty formed by a collection of elliptical cones of uncertainty. The shape deviation test is based on the two-tailed Wilcoxon-Mann-Whitney two-sample test between the normalized shape measures (area and circumference) of the elliptical cones of uncertainty of the single subject against a group of controls. The False Discovery Rate (FDR) and False Non-discovery Rate (FNR) were incorporated in the orientation deviation test. The shape deviation test uses FDR only. TOADDI was found to be numerically accurate and statistically effective. Clinical data from two Traumatic Brain Injury (TBI) patients and one non-TBI subject were tested against the data obtained from a group of 45 non-TBI controls to illustrate the application of the proposed framework in single-subject analysis. The frontal portion of the superior longitudinal fasciculus seemed to be implicated in both tests (orientation and shape) as significantly different from that of the control group. The TBI patients and the single non-TBI subject were well separated under the shape deviation test at the chosen FDR level of 0.0005. TOADDI is a simple but novel geometrically based statistical framework for analyzing DTI data. TOADDI may be found useful in single-subject, graph-theoretic and group analyses of DTI data or DTI-based tractography techniques.


Subject(s)
Data Interpretation, Statistical , Diffusion Tensor Imaging/methods , Models, Statistical , White Matter/pathology , Adult , Brain Injuries/pathology , Humans
15.
Brain Connect ; 5(2): 102-14, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25222050

ABSTRACT

A definitive diagnosis of mild traumatic brain injury (mTBI) is difficult due to the absence of biomarkers in standard clinical imaging. The brain is a complex network of interconnected neurons and subtle changes can modulate key networks of cognitive function. The resting state default mode network (DMN) has been shown to be sensitive to changes induced by pathology. This study seeks to determine whether quantitative measures of the DMN are sensitive in distinguishing mTBI subjects. Resting state functional magnetic resonance imaging data were obtained for healthy (n=12) and mTBI subjects (n=15). DMN maps were computed using dual-regression Independent Component Analysis (ICA). A goodness-of-fit (GOF) index was calculated to assess the degree of spatial specificity and sensitivity between healthy controls and mTBI subjects. DMN regions and neuropsychological assessments were examined to identify potential relationships. The resting state DMN maps indicate an increase in spatial coactivity in mTBI subjects within key regions of the DMN. Significant coactivity within the cerebellum and supplementary motor areas of mTBI subjects were also observed. This has not been previously reported in seed-based resting state network analysis. The GOF suggested the presence of high variability within the mTBI subject group, with poor sensitivity and specificity. The neuropsychological data showed correlations between areas of coactivity within the resting state network in the brain with a number of measures of emotion and cognitive functioning. The poor performance of the GOF highlights the key challenge associated with mTBI injury: the high variability in injury mechanisms and subsequent recovery. However, the quantification of the DMN using dual-regression ICA has potential to distinguish mTBI from healthy subjects, and provide information on the relationship of aspects of cognitive and emotional functioning with their potential neural correlates.


Subject(s)
Brain Injuries/physiopathology , Brain/physiopathology , Connectome , Nerve Net/physiopathology , Adult , Brain Injuries/diagnosis , Brain Injuries/psychology , Brain Mapping , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Military Personnel , Neuropsychological Tests , Young Adult
16.
Hum Brain Mapp ; 35(6): 2652-73, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24038816

ABSTRACT

Traumatic brain injury (TBI) is a common combat injury, often through explosive blast, and produces heterogeneous brain changes due to various mechanisms of injury. It is unclear whether the vulnerability of white matter differs between blast and impact injury, and the consequences of microstructural changes on neuropsychological function are poorly understood in military TBI patients. Diffusion tensor imaging (DTI) techniques were used to assess the neurocircuitry in 37 U.S. service members (29 mild, 7 moderate, 1 severe; 17 blast and 20 nonblast), who sustained a TBI while deployed, compared to 14 nondeployed, military controls. High-dimensional deformable registration of MRI diffusion tensor data was followed by fiber tracking and tract-specific analysis along with region-of-interest analysis. DTI results were examined in relation to post-concussion and post-traumatic stress disorder (PTSD) symptoms. The most prominent white matter microstructural injury for both blast and nonblast patients was in the frontal fibers within the fronto-striatal (corona radiata, internal capsule) and fronto-limbic circuits (fornix, cingulum), the fronto-parieto-occipital association fibers, in brainstem fibers, and in callosal fibers. Subcortical superior-inferiorly oriented tracts were more vulnerable to blast injury than nonblast injury, while direct impact force had more detrimental effects on anterior-posteriorly oriented tracts, which tended to cause heterogeneous left and right hemispheric asymmetries of white matter connectivity. The tractography using diffusion anisotropy deficits revealed the cortico-striatal-thalamic-cerebellar-cortical (CSTCC) networks, where increased post-concussion and PTSD symptoms were associated with low fractional anisotropy in the major nodes of compromised CSTCC neurocircuitry, and the consequences on cognitive function were explored as well.


Subject(s)
Brain Injuries/complications , Brain/physiopathology , Military Personnel , Post-Concussion Syndrome/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Anisotropy , Brain Injuries/physiopathology , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Neural Pathways/physiopathology , Neuropsychological Tests , Post-Concussion Syndrome/etiology , Psychiatric Status Rating Scales , Stress Disorders, Post-Traumatic/etiology , Time Factors
17.
Front Neurol ; 4: 16, 2013.
Article in English | MEDLINE | ID: mdl-23460082

ABSTRACT

This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries.

18.
NMR Biomed ; 26(6): 651-63, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23456696

ABSTRACT

Perfusion deficits in patients with mild traumatic brain injury (TBI) from a military population were characterized by dynamic susceptibility contrast perfusion imaging. Relative cerebral blood flow (rCBF) was calculated by a model-independent deconvolution approach from the tracer concentration curves following a bolus injection of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) using both manually and automatically selected arterial input functions (AIFs). Linear regression analysis of the mean values of rCBF from selected regions of interest showed a very good agreement between the two approaches, with a regression coefficient of R = 0.88 and a slope of 0.88. The Bland-Altman plot also illustrated the good agreement between the two approaches, with a mean difference of 0.6 ± 12.4 mL/100 g/min. Voxelwise analysis of rCBF maps from both approaches demonstrated multiple clusters of decreased perfusion (p < 0.01) in the cerebellum, cuneus, cingulate and temporal gyrus in the group with mild TBI relative to the controls. MRI perfusion deficits in the cerebellum and anterior cingulate also correlated (p < 0.01) with neurocognitive results, including the mean reaction time in the Automated Neuropsychological Assessment Metrics and commission error and detection T-scores in the Continuous Performance Test, as well as neurobehavioral scores in the Post-traumatic Stress Disorder Checklist-Civilian Version. In conclusion, rCBF calculated using AIFs selected from an automated approach demonstrated a good agreement with the corresponding results using manually selected AIFs. Group analysis of patients with mild TBI from a military population demonstrated scattered perfusion deficits, which showed significant correlations with measures of verbal memory, speed of reaction time and self-report of stress symptoms.


Subject(s)
Brain Injuries/physiopathology , Cerebrovascular Circulation , Magnetic Resonance Imaging/methods , Adult , Brain Injuries/psychology , Cognition , Contrast Media , Female , Gadolinium DTPA , Humans , Linear Models , Male
19.
Mil Med ; 177(9 Suppl): 72-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23029866

ABSTRACT

BACKGROUND: Clinical reasoning is essential to medical practice, but because it entails internal mental processes, it is difficult to assess. Functional magnetic resonance imaging (fMRI) and think-aloud protocols may improve understanding of clinical reasoning as these methods can more directly assess these processes. The objective of our study was to use a combination of fMRI and think-aloud procedures to examine fMRI correlates of a leading theoretical model in clinical reasoning based on experimental findings to date: analytic (i.e., actively comparing and contrasting diagnostic entities) and nonanalytic (i.e., pattern recognition) reasoning. We hypothesized that there would be functional neuroimaging differences between analytic and nonanalytic reasoning theory. METHODS: 17 board-certified experts in internal medicine answered and reflected on validated U.S. Medical Licensing Exam and American Board of Internal Medicine multiple-choice questions (easy and difficult) during an fMRI scan. This procedure was followed by completion of a formal think-aloud procedure. RESULTS: fMRI findings provide some support for the presence of analytic and nonanalytic reasoning systems. Statistically significant activation of prefrontal cortex distinguished answering incorrectly versus correctly (p < 0.01), whereas activation of precuneus and midtemporal gyrus distinguished not guessing from guessing (p < 0.01). CONCLUSIONS: We found limited fMRI evidence to support analytic and nonanalytic reasoning theory, as our results indicate functional differences with correct vs. incorrect answers and guessing vs. not guessing. However, our findings did not suggest one consistent fMRI activation pattern of internal medicine expertise. This model of employing fMRI correlates offers opportunities to enhance our understanding of theory, as well as improve our teaching and assessment of clinical reasoning, a key outcome of medical education.


Subject(s)
Clinical Competence , Decision Making/physiology , Functional Neuroimaging , Internal Medicine , Thinking , Adult , Basal Ganglia/physiology , Clinical Competence/standards , Female , Functional Neuroimaging/methods , Humans , Internal Medicine/standards , Male , Middle Aged , Physicians/psychology , Prefrontal Cortex/physiology , Temporal Lobe/physiology
20.
Article in English | MEDLINE | ID: mdl-23367161

ABSTRACT

A major challenge associated with understanding mild traumatic brain injury (mTBI) is the absence of biomarkers in standard clinical imaging modalities. Furthermore, the inhomogeneity of mTBI location and intensity, combined with latent symptoms further complicates identification and treatment. A growing body of evidence suggests that the thalamus may be injured or susceptible to change as the result of mTBI. A significant number of connections to and from cortical, subcortical, cerebellar and brain stem regions converge at the thalamus. Furthermore, the thalamus is also involved with information processing, integration and the regulation of specific behaviors. We use graph theory analysis to evaluate intrinsic functional networks of the left and right thalamus in mTBI subjects (N=15) and neurologically intact healthy controls (N=12). We also explore neural correlates of the thalamic network architecture with clinical assessments. Our results suggest the presence of distinct unilateral thalamic differences in mTBI subjects. We also observe correlations of the thalamic changes with clinical assessments. The findings from this study have implications for functional networks in the thalamus and its projections for application as a potential biomarker for mTBI detection.


Subject(s)
Brain Injuries/diagnosis , Adult , Case-Control Studies , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...