Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(18): 14494-501, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20722372

ABSTRACT

The internal structure of polystyrene(PS)-shell micelles having core-forming blocks consisting of polydimethylsiloxane (PDMS) or poly[5-(N,N-diethylamino)isoprene] (PAI) was determined in detail by accessing the multilevel structural organization using static and dynamic light scattering and small-angle X-ray scattering techniques. Well-defined PS-b-PDMS and PS-b-PAI diblock copolymers with molar masses in the range of 12.0k-18.2k g/mol were dispersed in cyclohexane, dimethylacetamide, or dimethylformamide. Colloidal nanoparticles exhibiting either swollen core with a large surface area per corona chain that enables the PS chains to assume a random coil conformation with gaussian statistics, or compact core and slightly stretched PS chains in the corona were obtained. Therefore, the results of this study provide an interesting alternative allowing for precise control of the core and corona properties of PS-b-PDMS and PS-b-PAI micelles in selective solvents. Admittedly, such differences in terms of micellar properties can dictate the potential of block copolymer micelles for generating thin films from preformed nano-objects, as well as the capability to function as nanoreactors in organic medium.

2.
Langmuir ; 25(6): 3487-93, 2009 Apr 09.
Article in English | MEDLINE | ID: mdl-19708143

ABSTRACT

We report the characterization through SAXS measurements of micelles produced from a new series of block copolymers: one diblock and four triblock copolymers bearing short poly[5-(N,N-diethylamino)isoprene] and long polystyrene blocks. Micellar aggregates produced in DMF (selective solvent for polystyrene) from the same set of samples were previously successfully characterized through light scattering measurements. The X-ray scattering profiles of starlike (from the diblock copolymer sample) and flowerlike micelles (from the triblock copolymers samples) could be fitted using the spherical copolymer micelle model proposed by Pedersen and Gerstenberg (Macromolecules 1996, 29, 1363.) where in the case of flowerlike micelles, the particles were understood as formed by hypothetical diblock copolymers having half of the true polymeric molar mass. Using the spherical copolymer micelle model, it could be possible to attest the unswollen nature of the micellar cores. The total micellar size suggested thus that the chains forming the corona are extended which is mainly related to a small core surface area per corona chain entering the core (Ac/n), which also induced a small number of aggregation (N(agg)) of all self-assembled particles. The total micellar size fits well with our previous light scattering measurements.

3.
Langmuir ; 25(2): 731-8, 2009 Jan 20.
Article in English | MEDLINE | ID: mdl-19177644

ABSTRACT

A combination of dynamic (DLS) and static (SLS) light scattering measurements was employed to study the self-assembly behavior of a new series of triblock copolymers bearing poly[5-(N,N-diethylamino isoprene)] (PAI) short outer blocks and polystyrene (PS) as the major middle block. Previously, it was verified that PAI outer blocks can be quaternized leading the formation of crew-cut aggregates in water (Riegel, I. C.; Eisenberg, A.; Petzhold, C. L.; Samios, D. Langmuir 2002, 18, 3358). Herein, we focus on the copolymer's ability in the nonquaternized version to undergo self-aggregation in dimethylformamide (DMF), a selective solvent for the middle block. Light scattering measurements showed that formation of well-defined flowerlike micelles is likely to occur. Aggregates with a relatively narrow distribution, small average size, and number of aggregation ranging from 21 to 39 chains/micelle were experimentally observed. The results also suggested that approximately 5-6 polymeric units per each short outer block are needed to induce aggregation. The middle block length governs the size of the micelles and influences the number of aggregation of the resultant particles as well. Furthermore, when the polystyrene middle block was particularly long (degree of polymerization DP > 600), dynamic and static light scattering measurements suggested the formation of bridged micelles in an open structure in concentrations as low as 15 mg mL-1.


Subject(s)
Dimethylformamide/chemistry , Ethylamines/chemistry , Hemiterpenes/chemistry , Micelles , Polystyrenes/chemistry , Light , Molecular Structure , Particle Size , Scattering, Radiation , Solvents/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...