Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int J Cardiol ; 401: 131699, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38182061

ABSTRACT

BACKGROUND: Cardiogenic shock (CS) is the leading cause of death in patients with myocardial infarction with a mortality rate greater than 50%. Recently, the CS 4 Proteins (CS4P) and CLIP scores have been developed to predict survival in CS patients. However, their impact in acute CS and additional short-term left ventricular (LV) circulatory support as prognostic markers is currently not known. METHODS AND RESULTS: CS was induced in a porcine model by injecting microsphere particles into the left main coronary artery. Mechanical circulatory support was performed by additional percutaneous LV unloading using an Impella microaxial flow-pump for 30 minutes. Serum samples were collected at baseline, following the onset of CS, and additional LV unloading. Serum levels of biomarkers of the CS4P (beta-2-microglobulin, ALDOB, L-FABP, SerpinG1) and the CLIP scores (Cystatin C, Lactate, Interleukin-6, NT-proBNP) were neither different at any time point investigated nor did they correlate with cardiac output. CONCLUSION: The CS4P and CLIP scores do not reflect immediate whole-body dysregulation in acute CS and have not been able to predict the potential reversal following additional short-term mechanical support by LV unloading in our experimental model. The impact of both scores as prognostic markers after the immediate onset of CS and following additional short-term LV unloading to identify patients at greatest risk remains to be determined.


Subject(s)
Heart-Assist Devices , Myocardial Infarction , Humans , Animals , Swine , Shock, Cardiogenic/diagnosis , Shock, Cardiogenic/therapy , Shock, Cardiogenic/etiology , Cardiac Output , Biomarkers , Heart-Assist Devices/adverse effects , Treatment Outcome
2.
J Am Heart Assoc ; 13(3): e033553, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293923

ABSTRACT

BACKGROUND: Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)-induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device-mediated mechanical unloading and circulatory support. METHODS AND RESULTS: We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia-inducible factor)-1α-mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia-mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device-mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. CONCLUSIONS: Hypoxia attenuates LVPO-induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia-mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO-induced heart failure and mediate cardiac recovery following mechanical circulatory support.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Humans , Mice , Animals , Heart Failure/etiology , Cardiomegaly/metabolism , Myocardium/metabolism , Hypoxia/complications , Ventricular Remodeling , Disease Models, Animal
3.
Front Endocrinol (Lausanne) ; 14: 1118751, 2023.
Article in English | MEDLINE | ID: mdl-36891060

ABSTRACT

Background: Perturbed mitochondrial energetics and vitamin A (VitA) metabolism are associated with the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes (T2D). Methods: To test the hypothesis that VitA regulates tissue-specific mitochondrial energetics and adverse organ remodeling in DIO, we utilized a murine model of impaired VitA availability and high fat diet (HFD) feeding. Mitochondrial respiratory capacity and organ remodeling were assessed in liver, skeletal muscle, and kidney tissue, which are organs affected by T2D-associated complications and are critical for the pathogenesis of T2D. Results: In liver, VitA had no impact on maximal ADP-stimulated mitochondrial respiratory capacity (VADP) following HFD feeding with palmitoyl-carnitine and pyruvate each combined with malate as substrates. Interestingly, histopathological and gene expression analyses revealed that VitA mediates steatosis and adverse remodeling in DIO. In skeletal muscle, VitA did not affect VADP following HFD feeding. No morphological differences were detected between groups. In kidney, VADP was not different between groups with both combinations of substrates and VitA transduced the pro-fibrotic transcriptional response following HFD feeding. Conclusion: The present study identifies an unexpected and tissue-specific role for VitA in DIO that regulates the pro-fibrotic transcriptional response and that results in organ damage independent of changes in mitochondrial energetics.


Subject(s)
Diabetes Mellitus, Type 2 , Vitamin A , Mice , Animals , Vitamin A/metabolism , Diabetes Mellitus, Type 2/metabolism , Mitochondria, Muscle/metabolism , Mitochondria/metabolism , Obesity/etiology , Obesity/metabolism , Diet, High-Fat/adverse effects
4.
Biology (Basel) ; 11(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36552246

ABSTRACT

Capillary endothelial cells modulate myocardial growth and function during pathological stress, but it is unknown how and whether this contributes to the development of heart failure. We found that the endothelial cell transcription factor GATA2 is downregulated in human failing myocardium. Endothelial GATA2 knock-out (G2-EC-KO) mice develop heart failure and defective myocardial signal transduction during pressure overload, indicating that the GATA2 downregulation is maladaptive. Heart failure and perturbed signaling in G2-EC-KO mice could be induced by strong upregulation of two unknown, endothelial cell-derived long non-coding (lnc) RNAs (AK037972, AK038629, termed here GADLOR1 and 2). Mechanistically, the GADLOR1/2 lncRNAs transfer from endothelial cells to cardiomyocytes, where they block stress-induced signalling. Thereby, lncRNAs can contribute to disease as paracrine effectors of signal transduction and therefore might serve as therapeutic targets in the future.

5.
Am J Physiol Heart Circ Physiol ; 323(6): H1352-H1364, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36399384

ABSTRACT

Perturbed vitamin-A metabolism is associated with type 2 diabetes and mitochondrial dysfunction that are pathophysiologically linked to the development of diabetic cardiomyopathy (DCM). However, the mechanism, by which vitamin A might regulate mitochondrial energetics in DCM has previously not been explored. To test the hypothesis that vitamin-A deficiency accelerates the onset of cardiomyopathy in diet-induced obesity (DIO), we subjected mice with lecithin retinol acyltransferase (Lrat) germline deletion, which exhibit impaired vitamin-A stores, to vitamin A-deficient high-fat diet (HFD) feeding. Wild-type mice fed with a vitamin A-sufficient HFD served as controls. Cardiac structure, contractile function, and mitochondrial respiratory capacity were preserved despite vitamin-A deficiency following 20 wk of HFD feeding. Gene profiling by RNA sequencing revealed that vitamin A is required for the expression of genes involved in cardiac fatty acid oxidation, glycolysis, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation in DIO as expression of these genes was relatively preserved under vitamin A-sufficient HFD conditions. Together, these data identify a transcriptional program, by which vitamin A preserves cardiac energetic gene expression in DIO that might attenuate subsequent onset of mitochondrial and contractile dysfunction.NEW & NOTEWORTHY The relationship between vitamin-A status and the pathogenesis of diabetic cardiomyopathy has not been studied in detail. We assessed cardiac mitochondrial respiratory capacity, contractile function, and gene expression by RNA sequencing in a murine model of combined vitamin-A deficiency and diet-induced obesity. Our study identifies a role for vitamin A in preserving cardiac energetic gene expression that might attenuate subsequent development of mitochondrial and contractile dysfunction in diet-induced obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Mice , Animals , Vitamin A , Disease Models, Animal , Diet , Obesity/genetics , Gene Expression , Vitamins
6.
Mol Cell Biol ; 42(10): e0016322, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36125265

ABSTRACT

Insulin and insulin-like growth factor 1 (IGF1) signaling is transduced by insulin receptor substrate 1 (IRS1) and IRS2. To elucidate physiological and redundant roles of insulin and IGF1 signaling in adult hearts, we generated mice with inducible cardiomyocyte-specific deletion of insulin and IGF1 receptors or IRS1 and IRS2. Both models developed dilated cardiomyopathy, and most mice died by 8 weeks post-gene deletion. Heart failure was characterized by cardiomyocyte loss and disarray, increased proapoptotic signaling, and increased autophagy. Suppression of autophagy by activating mTOR signaling did not prevent heart failure. Transcriptional profiling revealed reduced serum response factor (SRF) transcriptional activity and decreased mRNA levels of genes encoding sarcomere and gap junction proteins as early as 3 days post-gene deletion, in concert with ultrastructural evidence of sarcomere disruption and intercalated discs within 1 week after gene deletion. These data confirm conserved roles for constitutive insulin and IGF1 signaling in suppressing autophagic and apoptotic signaling in the adult heart. The present study also identifies an unexpected role for insulin and IGF1 signaling in regulating an SRF-mediated transcriptional program, which maintains expression of genes encoding proteins that support sarcomere integrity in the adult heart, reduction of which results in rapid development of heart failure.


Subject(s)
Heart Failure , Insulin-Like Growth Factor I , Mice , Animals , Insulin Receptor Substrate Proteins/metabolism , Insulin-Like Growth Factor I/genetics , Insulin/metabolism , Serum Response Factor/metabolism , Sarcomeres/metabolism , Myocytes, Cardiac/metabolism , Heart Failure/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , Connexins/metabolism
7.
Front Cardiovasc Med ; 9: 881067, 2022.
Article in English | MEDLINE | ID: mdl-35694659

ABSTRACT

Background: Cardiogenic shock (CS) alters whole body metabolism and circulating biomarkers serve as prognostic markers in CS patients. Percutaneous ventricular assist devices (pVADs) unload the left ventricle by actively ejecting blood into the aorta. The goal of the present study was to identify alterations in circulating metabolites and transcripts in a large animal model that might serve as potential prognostic biomarkers in acute CS and additional left ventricular unloading by Impella ® pVAD support. Methods: CS was induced in a preclinical large animal model by injecting microspheres into the left coronary artery system in six pigs. After the induction of CS, mechanical pVAD support was implemented for 30 min total. Serum samples were collected under basal conditions, after the onset of CS, and following additional pVAD unloading. Circulating metabolites were determined by metabolomic analysis, circulating RNA entities by RNA sequencing. Results: CS and additional pVAD support alter the abundance of circulating metabolites involved in Aminoacyl-tRNA biosynthesis and amino acid metabolism. RNA sequencing revealed decreased abundance of the hypoxia sensitive miRNA-200b following the induction of CS, which was reversed following pVAD support. Conclusion: The hypoxamir miRNA-200b is a potential circulating marker that is repressed in CS and is restored following pVAD support. The early transcriptional response with increased miRNA-200b expression following only 30 min of pVAD support suggests that mechanical unloading alters whole body metabolism. Future studies are required to delineate the impact of serum miRNA-200b levels as a prognostic marker in patients with acute CS and pVAD unloading.

8.
Lab Anim ; 56(4): 380-395, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35102773

ABSTRACT

Health monitoring of laboratory rodents not only improves animal health but also enhances the validity of animal experiments. In particular, infections of laboratory animals with murine parvoviruses influence biomedical research data. Despite strict barrier housing, prevalence remains high in animal facilities, leading to increased risk of parvovirus introduction after the import of contaminated mice. Unfortunately, hygienic rederivation can be challenging, since gametes often contain residual virus material. Consequently, the process has to be closely monitored with highly sensitive diagnostic methods to verify parvovirus decontamination of the rederived progeny. However, diagnostic sensitivity of traditional methods is often low and requires testing of large animal cohorts. Therefore, we aimed to develop a powerful quantitative real-time polymerase chain reaction (qPCR) assay for the fast and reliable detection of murine parvoviruses in different sample materials. We validated the assay within an infection experiment and systematically analysed various animal-derived and environmental sample materials. We further developed a strategic risk assessment procedure for parvovirus monitoring after embryo transfer. Our novel qPCR assay reliably detected parvovirus DNA in a broad variety of sample materials, with environmental samples dominating in the acute phase of infection, whereas animal-derived samples were more suitable to detect low virus loads in the chronic phase. Here, the assay served as a highly sensitive screening method for parvovirus contamination in mouse colonies, requiring significantly lower sample sizes than traditional methods like conventional PCR and serology. Thus, the use of our novel qPCR assay substantially improves parvovirus diagnostics, enhancing research validity according to the 6Rs.


Subject(s)
Parvoviridae Infections , Parvovirus , Rodent Diseases , Animals , Mice , Parvoviridae Infections/diagnosis , Parvovirus/genetics , Real-Time Polymerase Chain Reaction/methods , Risk Assessment , Rodent Diseases/diagnosis
9.
Elife ; 102021 07 22.
Article in English | MEDLINE | ID: mdl-34289931

ABSTRACT

Immature neutrophils and HLA-DRneg/low monocytes expand in cancer, autoimmune diseases and viral infections, but their appearance and immunoregulatory effects on T-cells after acute myocardial infarction (AMI) remain underexplored. We found an expansion of circulating immature CD16+CD66b+CD10neg neutrophils and CD14+HLA-DRneg/low monocytes in AMI patients, correlating with cardiac damage, function and levels of immune-inflammation markers. Immature CD10neg neutrophils expressed high amounts of MMP-9 and S100A9, and displayed resistance to apoptosis. Moreover, we found that increased frequency of CD10neg neutrophils and elevated circulating IFN-γ levels were linked, mainly in patients with expanded CD4+CD28null T-cells. Notably, the expansion of circulating CD4+CD28null T-cells was associated with cytomegalovirus (CMV) seropositivity. Using bioinformatic tools, we identified a tight relationship among the peripheral expansion of immature CD10neg neutrophils, CMV IgG titers, and circulating levels of IFN-γ and IL-12 in patients with AMI. At a mechanistic level, CD10neg neutrophils enhanced IFN-γ production by CD4+ T-cells through a contact-independent mechanism involving IL-12. In vitro experiments also highlighted that HLA-DRneg/low monocytes do not suppress T-cell proliferation but secrete high levels of pro-inflammatory cytokines after differentiation to macrophages and IFN-γ stimulation. Lastly, using a mouse model of AMI, we showed that immature neutrophils (CD11bposLy6GposCD101neg cells) are recruited to the injured myocardium and migrate to mediastinal lymph nodes shortly after reperfusion. In conclusion, immunoregulatory functions of CD10neg neutrophils play a dynamic role in mechanisms linking myeloid cell compartment dysregulation, Th1-type immune responses and inflammation after AMI.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HLA-DR Antigens/immunology , Monocytes/immunology , Myocardial Infarction/immunology , Neprilysin/immunology , Neutrophils/immunology , Aged , Animals , Biomarkers , Cell Differentiation , Cell Proliferation , Cytokines , Female , Humans , Inflammation , Lymphocyte Activation , Male , Mice , Middle Aged , Myocardial Infarction/pathology , T-Lymphocytes/immunology
10.
Eur Respir J ; 56(3)2020 09.
Article in English | MEDLINE | ID: mdl-32398305

ABSTRACT

BACKGROUND: There is scarce evidence for mechanical circulatory support (MCS) in patients with influenza-related myocarditis complicated by refractory cardiogenic shock (rCS). We sought to investigate the impact of MCS using combined veno-arterial extracorporeal membrane oxygenation (VA-ECMO) and micro-axial flow pumps (the ECMELLA concept) in influenza-related myocarditis complicated by rCS. METHODS: This is a prospective, observational analysis from the single centre HAnnover Cardiac Unloading REgistry (HACURE) from two recent epidemic influenza seasons. We analysed patients with verified influenza-associated myocarditis complicated by rCS who were admitted to our intensive care unit (ICU) on MCS. Subsequently, we performed a propensity score (PS) matched analysis to patients with acute myocardial infarction (AMI) complicated by rCS and non-ischaemic cardiomyopathy (DCM) related rCS. RESULTS: We describe a series of seven patients with rCS-complicated influenza-related myocarditis (mean age 56±10 years, 58% male, influenza A (n=2)/influenza B (n=5)). No patient had been vaccinated prior to the influenza season. MCS was provided using combined VA-ECMO and Impella micro-axial flow pump. In two patients with out-of-hospital cardiac arrest, VA-ECMO had been implanted for extracorporeal cardiopulmonary resuscitation. All patients died within 18 days of hospital admission. By PS-based comparison to patients with AMI- or DCM-related rCS and combined MCS, 30-day mortality was significantly higher in influenza-related rCS. CONCLUSION: Despite initial stabilisation with combined MCS in patients with rCS-complicated influenza-related myocarditis, the detrimental course of shock could not be stopped and all patients died. Influenza virus infection potentially critically affects other organs besides the heart, leading to irreversible end-organ damage that MCS cannot compensate for and, therefore, results in a devastating outcome.


Subject(s)
Myocarditis , Orthomyxoviridae , Aged , Female , Humans , Male , Middle Aged , Myocarditis/complications , Myocarditis/therapy , Prospective Studies , Shock, Cardiogenic/etiology , Shock, Cardiogenic/therapy , Treatment Outcome
11.
JCI Insight ; 5(6)2020 03 26.
Article in English | MEDLINE | ID: mdl-32213702

ABSTRACT

Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G-mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.


Subject(s)
Insulin Receptor Substrate Proteins/metabolism , Insulin/metabolism , Ventricular Remodeling/physiology , Animals , Cardiomegaly/complications , Humans , Hyperinsulinism/complications , Insulin Resistance/physiology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism
12.
J Mol Med (Berl) ; 97(10): 1427-1438, 2019 10.
Article in English | MEDLINE | ID: mdl-31338525

ABSTRACT

Alveolar and myocardial hypoxia may be causes or sequelae of pulmonary hypertension (PH) and heart failure. We hypothesized that hypoxia initiates specific epigenetic and transcriptional, pro-inflammatory programs in the right ventricle (RV) and left ventricle (LV). We performed an expression screen of 750 miRNAs by qPCR arrays in the murine RV and LV in normoxia (Nx) and hypoxia (Hx; 10% O2 for 18 h, 48 h, and 5d). Additional validation included single qPCR analysis of miRNA and pro-inflammatory transcripts in murine and human RV/LV, and neonatal rat cardiomyocytes (NRCMs). Differential qPCR-analysis (Hx vs. Nx in RV, Hx vs. Nx in LV, and RV vs. LV in Hx) identified nine hypoxia-regulated miRNAs: let-7e-5p, miR-29c-3p, miR-127-3p, miR-130a-3p, miR-146b-5p, miR-197-3p, miR-214-3p, miR-223-3p, and miR-451. Hypoxia downregulated miR-146b in the RV (p < 0.01) and, less so, in the LV (trend; p = 0.28). In silico alignment showed significant binding affinity of miR-146b-5p sequence with the 3'UTR of TRAF6 known to be upstream of pro-inflammatory NF-kB. Consistently, hypoxia induced TRAF6, IL-6, CCL2(MCP-1) in the mouse RV and LV. Incubating neonatal rat cardiomyocytes with pre-miR-146b led to a downregulation of TRAF6, IL-6, and CCL2(MCP-1). TRAF6 mRNA expression was also increased by 3-fold in the RV and LV of end-stage idiopathic pulmonary arterial hypertension (PAH) patients vs. non-PAH controls. We identified hypoxia-regulated, ventricle-specific miRNA expression profiles in the adult mouse heart in vivo. Hypoxia suppresses miR-146b, thus de-repressing TRAF6, and inducing pro-inflammatory IL-6 and CCL2(MCP-1). This novel hypoxia-induced miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac fibrosis and dysfunction, and may lead to heart failure. KEY MESSAGES: Chouvarine P, Legchenko E, Geldner J, Riehle C, Hansmann G. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. • Hypoxia drives ventricle-specific miRNA profiles, regulating cardiac inflammation. • miR-146b-5p downregulates TRAF6, known to act upstream of pro-inflammatory NF-κB. • Hypoxia downregulates miR-146b and induces TRAF6, IL-6, CCL2 (MCP-1) in the murine RV and LV. • The inhibitory regulatory effects of miR-146b are confirmed in primary rat cardiomyocytes (pre-miR, anti-miR) and human explant heart tissue (endstage pulmonary arterial hypertension). • A novel miR-146b-TRAF6-IL-6/CCL2(MCP-1) axis likely drives cardiac inflammation, fibrosis and ventricular dysfunction.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation , Inflammation/genetics , MicroRNAs/genetics , Myocardium/metabolism , Animals , Animals, Newborn , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Heart Ventricles/metabolism , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypoxia , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Myocardium/pathology , Rats , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism
13.
Cardiovasc Res ; 115(13): 1838-1849, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31243437

ABSTRACT

Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.


Subject(s)
Heart Failure/etiology , Stroke Volume , Ventricular Function, Left , Animals , Disease Models, Animal , Heart Failure/physiopathology , Heart Failure/therapy , Humans , Species Specificity , Ventricular Pressure
14.
Cardiol Young ; 29(5): 602-609, 2019 May.
Article in English | MEDLINE | ID: mdl-31036097

ABSTRACT

BACKGROUND: Late Fontan survivors are at high risk to experience heart failure and death. Therefore, the current study sought to investigate the role of non-invasive diagnostics as prognostic markers for failure of the systemic ventricle following Fontan procedure. METHODS: This monocentric, longitudinal observational study included 60 patients with a median age of 24.5 (19-29) years, who were subjected to cardiac magnetic resonance imaging, echocardiography, cardiopulmonary exercise testing, and blood analysis. The primary endpoint of this study was decompensated heart failure with symptoms at rest, peripheral and/or pulmonary edema, and/or death. RESULTS: During a follow-up of 24 months, 5 patients died and 5 patients suffered from decompensated heart failure. Clinical (NYHA class, initial surgery), functional (VO2 peak, ejection fraction, cardiac index), circulating biomarkers (N-terminal pro brain natriuretic peptide), and imaging parameters (end diastolic volume index, end systolic volume index, mass-index, contractility, afterload) were significantly related to the primary endpoint. Multi-variate regression analysis identified afterload as assessed by cardiac magnetic resonance imaging as an independent predictor of the primary endpoint (hazard ratio 1.98, 95% confidence interval 1.19-3.29, p = 0.009). CONCLUSION: We identified distinct parameters of cardiopulmonary exercise testing, cardiac magnetic resonance imaging, and blood testing as markers for future decompensated heart failure and death in patients with Fontan circulation. Importantly, our data also identify increased afterload as an independent predictor for increased morbidity and mortality. This parameter is easy to assess by non-invasive cardiac magnetic resonance imaging. Its modulation may represent a potential therapeutic approach target in these high-risk patients.


Subject(s)
Fontan Procedure , Heart Defects, Congenital/surgery , Heart Failure/mortality , Adult , Biomarkers/blood , Exercise Test , Female , Germany , Heart Defects, Congenital/physiopathology , Heart Failure/diagnostic imaging , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Multivariate Analysis , Prognosis , Regression Analysis , Stroke Volume , Young Adult
15.
Basic Res Cardiol ; 114(1): 2, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30443826

ABSTRACT

Diabetes mellitus increases the risk of heart failure independent of co-existing hypertension and coronary artery disease. Although several molecular mechanisms for the development of diabetic cardiomyopathy have been identified, they are incompletely understood. The pathomechanisms are multifactorial and as a consequence, no causative treatment exists at this time to modulate or reverse the molecular changes contributing to accelerated cardiac dysfunction in diabetic patients. Numerous animal models have been generated, which serve as powerful tools to study the impact of type 1 and type 2 diabetes on the heart. Despite specific limitations of the models generated, they mimic various perturbations observed in the diabetic myocardium and continue to provide important mechanistic insight into the pathogenesis underlying diabetic cardiomyopathy. This article reviews recent studies in both diabetic patients and in these animal models, and discusses novel hypotheses to delineate the increased incidence of heart failure in diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Animals , Humans , Mice
16.
BMC Cardiovasc Disord ; 17(1): 244, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28899346

ABSTRACT

BACKGROUND: Wolff-Parkinson-White (WPW) syndrome and idiopathic left ventricular tachycardia (ILVT) are rare and up to now the coexistence of both entities has rarely been reported. In patients with ventricular preexcitation the underlying mechanism of paroxysmal tachycardia most likely is atrioventricular reentrant tachycardia (AVRT). However, without ECG documentation of the tachycardia diagnosis of the underlying mechanism cannot be made due to similar clinical presentation of AVRT and ILVT. CASE PRESENTATION: We report a case of a two-staged occurrence of two rare arrhythmias in a young adult, who was admitted to our hospital twice within 6 months because of paroxysmal tachycardia. WPW syndrome and ILVT as underlying arrhythmias have been diagnosed and were ablated successfully. CONCLUSIONS: This case highlights the diagnostic defiance of rare tachycardia entities and the paramount importance of ECG documentation and analysis of all available tachycardia ECGs.


Subject(s)
Catheter Ablation/methods , Electrocardiography , Tachycardia, Atrioventricular Nodal Reentry/diagnosis , Tachycardia, Paroxysmal/diagnosis , Tachycardia, Ventricular/diagnosis , Adult , Diagnosis, Differential , Heart Conduction System/physiopathology , Heart Conduction System/surgery , Humans , Male , Tachycardia, Atrioventricular Nodal Reentry/complications , Tachycardia, Atrioventricular Nodal Reentry/surgery , Tachycardia, Paroxysmal/complications , Tachycardia, Paroxysmal/surgery , Tachycardia, Ventricular/complications , Tachycardia, Ventricular/surgery , Wolff-Parkinson-White Syndrome/diagnosis
17.
PLoS One ; 12(8): e0183193, 2017.
Article in English | MEDLINE | ID: mdl-28806755

ABSTRACT

Early use of mechanical circulatory support, e.g. veno-arterial extracorporeal membrane oxygenation (ECMO) or left ventricular unloading by microaxial pump in refractory cardiogenic shock is recommended in current guidelines. Development of acquired von Willebrand Syndrome (AVWS) in patients with left ventricular assist devices (LVADs) and ECMO has been reported. There is an increasing number of patients treated with the Impella® CP microaxial pump for left ventricular unloading. However, the prevalence of AVWS in these high risk patients is unknown and needs to be determined. We therefore screened 21 patients (68 ± 11years) treated with Impella® (17 for cardiogenic shock, 4 for protected PCI) for the presence of AVWS by determining von Willebrand factor multimers, VWF collagen binding capacity and VWF antigen. During the time course of Impella® support, 20/21 patients (95%) developed AVWS (mean duration of support: 135 ± 114 hours, mean time from device implantation to first diagnosis of AVWS: 10.6 ± 10.8 hours). Our data indicate that AVWS is a common phenomenon during left ventricular unloading via microaxial pump support. Thus, AVWS has to be considered as contributing factor for potential bleeding complications in this high risk patient population, especially in the context of dual antiplatelet therapy.


Subject(s)
Heart-Assist Devices/adverse effects , Shock, Cardiogenic/complications , von Willebrand Diseases/etiology , Aged , Antigens/metabolism , Collagen/metabolism , Electrophoresis , Female , Humans , Male , Protein Binding , Syndrome , von Willebrand Diseases/diagnosis
18.
Cardiovasc Pathol ; 27: 68-70, 2017.
Article in English | MEDLINE | ID: mdl-28171828

ABSTRACT

Immunological vascular phenomena can be the initial manifestation of bacterial infection and endocarditis. Here, we report a rare case of leukocytoclastic vasculitis without immune complexes or cryoglobulinemia in a patient with infective endocarditis, congenital heart disease, and a prior mechanical valve replacement. The patient completely recovered following antibiotic therapy, and skin lesions disappeared without immune suppression, which suggested infection-mediated vasculitis. While the treatment of leukocytoclastic vasculitis typically involves immunosuppressive therapy, the treatment for infection-mediated vasculitis is eradication of the infection.


Subject(s)
Endocarditis, Bacterial/complications , Transposition of Great Vessels/complications , Vasculitis, Leukocytoclastic, Cutaneous/etiology , Adult , Female , Heart Valve Prosthesis , Humans , Postoperative Complications , Staphylococcal Infections/complications
19.
Circ Res ; 118(7): 1151-69, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27034277

ABSTRACT

Heart failure is associated with generalized insulin resistance. Moreover, insulin-resistant states such as type 2 diabetes mellitus and obesity increases the risk of heart failure even after adjusting for traditional risk factors. Insulin resistance or type 2 diabetes mellitus alters the systemic and neurohumoral milieu, leading to changes in metabolism and signaling pathways in the heart that may contribute to myocardial dysfunction. In addition, changes in insulin signaling within cardiomyocytes develop in the failing heart. The changes range from activation of proximal insulin signaling pathways that may contribute to adverse left ventricular remodeling and mitochondrial dysfunction to repression of distal elements of insulin signaling pathways such as forkhead box O transcriptional signaling or glucose transport, which may also impair cardiac metabolism, structure, and function. This article will review the complexities of insulin signaling within the myocardium and ways in which these pathways are altered in heart failure or in conditions associated with generalized insulin resistance. The implications of these changes for therapeutic approaches to treating or preventing heart failure will be discussed.


Subject(s)
Heart Failure/physiopathology , Insulin/physiology , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Dietary Fats/toxicity , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism , Fatty Acids/metabolism , Forecasting , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Heart Failure/etiology , Heart Failure/prevention & control , Heart Failure/therapy , Humans , Hyperinsulinism/physiopathology , Insulin Resistance/physiology , Mitochondria, Heart/physiology , Myocardial Ischemia/complications , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Smooth Muscle/metabolism , Obesity/complications , Obesity/physiopathology , Protein Transport , Receptor, Insulin/physiology , Risk Factors , Signal Transduction/physiology , Ventricular Remodeling/physiology
20.
Am J Physiol Heart Circ Physiol ; 310(7): H821-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26825520

ABSTRACT

Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function.


Subject(s)
Mitochondria, Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Physical Conditioning, Animal , Animals , Aorta/metabolism , Aorta/physiology , Cell Respiration , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/physiology , Nitric Oxide Synthase Type III/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Vasoconstriction , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...