Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Digit Biomark ; 8(1): 111-119, 2024.
Article in English | MEDLINE | ID: mdl-39015513

ABSTRACT

Introduction: Amyotrophic lateral sclerosis (ALS) can affect various eye movements, making eye tracking a potential means for disease monitoring. In this study, we evaluated the feasibility of ALS patients self-recording their eye movements using the "EyePhone," a smartphone eye-tracking application. Methods: We prospectively enrolled ten participants and provided them with an iPhone equipped with the EyePhone app and a PowerPoint presentation with step-by-step recording instructions. The goal was for the participants to record their eye movements (saccades and smooth pursuit) without the help of the study team. Afterward, a trained physician administered the same tests using video-oculography (VOG) goggles and asked the participants to complete a questionnaire regarding their self-recording experience. Results: All participants successfully completed the self-recording process without assistance from the study team. Questionnaire data indicated that participants viewed self-recording with EyePhone favorably, considering it easy and comfortable. Moreover, 70% indicated that they prefer self-recording to being recorded by VOG goggles. Conclusion: With proper instruction, ALS patients can effectively use the EyePhone to record their eye movements, potentially even in a home environment. These results demonstrate the potential for smartphone eye-tracking technology as a viable and self-administered tool for monitoring disease progression in ALS, reducing the need for frequent clinic visits.

2.
J Am Heart Assoc ; 13(2): e030927, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38226513

ABSTRACT

BACKGROUND: There are ≈5 million annual dizziness visits to US emergency departments, of which vestibular strokes account for over 250 000. The head impulse, nystagmus, and test of skew eye examination can accurately distinguish vestibular strokes from peripheral dizziness. However, the eye-movement signs are subtle, and lack of familiarity and difficulty with recognition of abnormal eye movements are significant barriers to widespread emergency department use. To break this barrier, we sought to assess the accuracy of EyePhone, our smartphone eye-tracking application, for quantifying nystagmus. METHODS AND RESULTS: We prospectively enrolled healthy volunteers and recorded the velocity of induced nystagmus using a smartphone eye-tracking application (EyePhone) and then compared the results with video oculography (VOG). Following a calibration protocol, the participants viewed optokinetic stimuli with incremental velocities (2-12 degrees/s) in 4 directions. We extracted slow phase velocities from EyePhone data in each direction and compared them with the corresponding slow phase velocities obtained by the VOG. Furthermore, we calculated the area under the receiver operating characteristic curve for nystagmus detection by EyePhone. We enrolled 10 volunteers (90% men) with an average age of 30.2±6 years. EyePhone-recorded slow phase velocities highly correlated with the VOG recordings (r=0.98 for horizontal and r=0.94 for vertical). The calibration significantly increased the slope of linear regression for horizontal and vertical slow phase velocities. Evaluating the EyePhone's performance using VOG data with a 2 degrees/s threshold showed an area under the receiver operating characteristic curve of 0.87 for horizontal and vertical nystagmus detection. CONCLUSIONS: We demonstrated that EyePhone could accurately detect and quantify optokinetic nystagmus, similar to the VOG goggles.


Subject(s)
Nystagmus, Pathologic , Stroke , Male , Humans , Young Adult , Adult , Female , Eye-Tracking Technology , Dizziness/diagnosis , Smartphone , Nystagmus, Pathologic/diagnosis , Eye Movements , Stroke/diagnosis
3.
Sensors (Basel) ; 19(12)2019 Jun 23.
Article in English | MEDLINE | ID: mdl-31234599

ABSTRACT

The functional validity of the signal obtained with low-cost electroencephalography (EEG) devices is still under debate. Here, we have conducted an in-depth comparison of the EEG-recordings obtained with a medical-grade golden-cup electrodes ambulatory device, the SOMNOwatch + EEG-6, vs those obtained with a consumer-grade, single dry electrode low-cost device, the NeuroSky MindWave, one of the most affordable devices currently available. We recorded EEG signals at Fp1 using the two different devices simultaneously on 21 participants who underwent two experimental phases: a 12-minute resting state task (alternating two cycles of closed/open eyes periods), followed by 60-minute virtual-driving task. We evaluated the EEG recording quality by comparing the similarity between the temporal data series, their spectra, their signal-to-noise ratio, the reliability of EEG measurements (comparing the closed eyes periods), as well as their blink detection rate. We found substantial agreement between signals: whereas, qualitatively, the NeuroSky MindWave presented higher levels of noise and a biphasic shape of blinks, the similarity metric indicated that signals from both recording devices were significantly correlated. While the NeuroSky MindWave was less reliable, both devices had a similar blink detection rate. Overall, the NeuroSky MindWave is noise-limited, but provides stable recordings even through long periods of time. Furthermore, its data would be of adequate quality compared to that of conventional wet electrode EEG devices, except for a potential calibration error and spectral differences at low frequencies.


Subject(s)
Brain/physiology , Electroencephalography/instrumentation , Adult , Electrodes , Electroencephalography/economics , Female , Humans , Male , Reproducibility of Results , Signal-To-Noise Ratio , Young Adult
4.
Appl Ergon ; 77: 92-99, 2019 May.
Article in English | MEDLINE | ID: mdl-30832783

ABSTRACT

We studied the effects of task load variations as a function of flight complexity on combat pilots' gaze behavior (i.e., entropy) while solving in-flight emergencies. The second company of the Spanish Army Attack Helicopter Battalion (n = 15) performed three sets of standardized flight exercises with different levels of complexity (low [recognition flights], medium and high [emergency flights]). Throughout the flight exercises we recorded pilots' gaze entropy, as well as pilots' performance (assessed by an expert flight instructor) and subjective ratings of task load (assessed by the NASA-Task Load Index). Furthermore, we used pilots' electroencephalographic (EEG) activity as a reference physiological index for task load variations. We found that pilots' gaze entropy decreased ∼2% (i.e., visual scanning became less erratic) while solving the emergency flight exercises, showing a significant decreasing trend with increasing complexity (p < .05). This is in consonance with the ∼12% increase in the frontal theta band of their EEG spectra during said exercises. Pilots' errors and subjective ratings of task load increased as flight complexity increased (p-values < .05). Gaze data suggest that pilots used nondeterministic visual patterns when the aircraft was in an error-free state (low complexity), and changed their scanning behavior, becoming more deterministic, once emergencies occurred (medium/high complexity). Overall, our findings indicate that gaze entropy can serve as a sensitive index of task load in aviation settings.


Subject(s)
Emergencies/psychology , Fixation, Ocular , Military Personnel/psychology , Pilots/psychology , Workload/psychology , Adult , Humans , Male , Task Performance and Analysis
5.
Accid Anal Prev ; 109: 62-69, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29031926

ABSTRACT

Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving.


Subject(s)
Automobile Driving , Electroencephalography/methods , Eye Movements/physiology , Fatigue/prevention & control , Accidents, Traffic/prevention & control , Adult , Attention/physiology , Boredom , Fatigue/diagnosis , Female , Humans , Male , Surveys and Questionnaires , Young Adult
6.
Appl Ergon ; 65: 168-174, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28802436

ABSTRACT

BACKGROUND: Despite the growing interest concerning the laparo-endoscopic single-site surgery (LESS) procedure, LESS presents multiple difficulties and challenges that are likely to increase the surgeon's cognitive cost, in terms of both cognitive load and performance. Nevertheless, there is currently no objective index capable of assessing the surgeon cognitive cost while performing LESS. We assessed if gaze-based indices might offer unique and unbiased measures to quantify LESS complexity and its cognitive cost. We expect that the assessment of surgeon's cognitive cost to improve patient safety by measuring fitness-for-duty and reducing surgeons overload. METHODS: Using a wearable eye tracker device, we measured gaze entropy and velocity of surgical trainees and attending surgeons during two surgical procedures (LESS vs. multiport laparoscopy surgery [MPS]). None of the participants had previous experience with LESS. They performed two exercises with different complexity levels (Low: Pattern Cut vs. High: Peg Transfer). We also collected performance and subjective data. RESULTS: LESS caused higher cognitive demand than MPS, as indicated by increased gaze entropy in both surgical trainees and attending surgeons (exploration pattern became more random). Furthermore, gaze velocity was higher (exploration pattern became more rapid) for the LESS procedure independently of the surgeon's expertise. Perceived task complexity and laparoscopic accuracy confirmed gaze-based results. CONCLUSION: Gaze-based indices have great potential as objective and non-intrusive measures to assess surgeons' cognitive cost and fitness-for-duty. Furthermore, gaze-based indices might play a relevant role in defining future guidelines on surgeons' examinations to mark their achievements during the entire training (e.g. analyzing surgical learning curves).


Subject(s)
Cognition , Endoscopy , Eye Movements , General Surgery , Laparoscopy , Workload , Adult , Clinical Competence , Endoscopy/methods , Entropy , Eye Movement Measurements , Female , General Surgery/education , General Surgery/standards , Humans , Internship and Residency , Laparoscopy/methods , Male , Medical Staff, Hospital , Simulation Training , Surveys and Questionnaires , Task Performance and Analysis , Workload/psychology , Young Adult
7.
Urology ; 107: 26-30, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28666793

ABSTRACT

OBJECTIVE: To assess the sensitivity of gaze-based metrics in detecting cognitive demands imposed by surgical procedures. We analyzed urologists' gaze entropy and velocity while performing 2 standardized high-fidelity simulated stone procedures with different levels of complexity. METHODS: Using a wearable eye tracker device (mounted onto an eyeglass frame), we measured gaze entropy and velocity in 15 urologists, members of the Andalusian health-care system, while they performed an extraction of a stone in the bladder (low complexity) and an extraction of a stone in the lumbar ureter (high complexity). We also collected performance and subjective data. RESULTS: Gaze entropy and velocity were significantly higher when surgeons performed the most complex surgical procedure: the visual exploration pattern became less stereotyped (ie, more random) and faster. Surgeons' performance and perceived task complexity differed accordingly, confirming the gaze-based results. CONCLUSION: Gaze-based metrics might have great potential as objective and nonintrusive indices to assess surgeons' cognitive (over)load, potentially being a complementary assessment tool to quantify the learning curve for surgical procedures.


Subject(s)
Clinical Competence , Computer Simulation , Education, Medical, Graduate/standards , Laparoscopy/education , Surgeons/education , Urologic Surgical Procedures/education , Urology/education , Adult , Female , Humans , Learning Curve , Male , Surgeons/standards , Task Performance and Analysis , Urologic Surgical Procedures/standards
8.
Sci Rep ; 7: 43276, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240297

ABSTRACT

Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration.


Subject(s)
Capillaries/pathology , Epilepsy/pathology , Hippocampus/pathology , Hypoxia/pathology , Neurodegenerative Diseases/pathology , Seizures/pathology , Animals , Antigens/genetics , Antigens/metabolism , Blood Flow Velocity , Capillaries/diagnostic imaging , Capillaries/metabolism , Cerebrovascular Circulation , Disease Models, Animal , Epilepsy/diagnostic imaging , Epilepsy/metabolism , Gene Expression , Hippocampus/blood supply , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Hypoxia/diagnostic imaging , Hypoxia/metabolism , Mice , Microscopy, Confocal , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Proteoglycans/genetics , Proteoglycans/metabolism , Seizures/diagnostic imaging , Seizures/metabolism
9.
Physiol Meas ; 37(9): N62-75, 2016 09.
Article in English | MEDLINE | ID: mdl-27531394

ABSTRACT

Fatigue is a major contributing factor to operational errors. Therefore, the validation of objective and sensitive indices to detect fatigue is critical to prevent accidents and catastrophes. Whereas tests based on saccadic velocity (SV) have become popular, their sensitivity in the military is not yet clear, since most research has been conducted in laboratory settings using not fully validated instruments. Field studies remain scarce, especially in extreme conditions such as real flights. Here, we investigated the effects of real, long flights on SV. We assessed five newly commissioned military helicopter pilots during their aviation training. Pilots flew Sikorsky S-76C helicopters, under instrumental flight rules, for more than 2 h (ca. 150 min). Eye movements were recorded before and after the flight with an eye tracker using a standard guided-saccade task. We also collected subjective ratings of fatigue. SV significantly decreased from the Pre-Flight to the Post-Flight session in all pilots by around 3% (range: 1-4%). Subjective ratings showed the same tendency. We provide conclusive evidence about the high sensitivity of fatigue tests based on SV in real flight conditions, even in small samples. This result might offer military medical departments a valid and useful biomarker of warfighter physiological state.


Subject(s)
Fatigue/diagnosis , Fatigue/physiopathology , Military Personnel , Saccades , Adult , Humans , Male , Pilots
10.
Surg Endosc ; 30(11): 5034-5043, 2016 11.
Article in English | MEDLINE | ID: mdl-26983440

ABSTRACT

BACKGROUND: Task (over-)load imposed on surgeons is a main contributing factor to surgical errors. Recent research has shown that gaze metrics represent a valid and objective index to asses operator task load in non-surgical scenarios. Thus, gaze metrics have the potential to improve workplace safety by providing accurate measurements of task load variations. However, the direct relationship between gaze metrics and surgical task load has not been investigated yet. We studied the effects of surgical task complexity on the gaze metrics of surgical trainees. METHODS: We recorded the eye movements of 18 surgical residents, using a mobile eye tracker system, during the performance of three high-fidelity virtual simulations of laparoscopic exercises of increasing complexity level: Clip Applying exercise, Cutting Big exercise, and Translocation of Objects exercise. We also measured performance accuracy and subjective rating of complexity. RESULTS: Gaze entropy and velocity linearly increased with increased task complexity: Visual exploration pattern became less stereotyped (i.e., more random) and faster during the more complex exercises. Residents performed better the Clip Applying exercise and the Cutting Big exercise than the Translocation of Objects exercise and their perceived task complexity differed accordingly. CONCLUSIONS: Our data show that gaze metrics are a valid and reliable surgical task load index. These findings have potential impacts to improve patient safety by providing accurate measurements of surgeon task (over-)load and might provide future indices to assess residents' learning curves, independently of expensive virtual simulators or time-consuming expert evaluation.


Subject(s)
Eye Movements , Fatigue/physiopathology , Internship and Residency , Occupational Diseases/physiopathology , Work Schedule Tolerance , Adult , Computer Simulation , Entropy , Female , General Surgery/education , Humans , Male , Reproducibility of Results , Task Performance and Analysis , Workload
11.
PLoS One ; 10(6): e0126485, 2015.
Article in English | MEDLINE | ID: mdl-26067994

ABSTRACT

Saccadic intrusions (SIs), predominantly horizontal saccades that interrupt accurate fixation, include square-wave jerks (SWJs; the most common type of SI), which consist of an initial saccade away from the fixation target followed, after a short delay, by a return saccade that brings the eye back onto target. SWJs are present in most human subjects, but are prominent by their increased frequency and size in certain parkinsonian disorders and in recessive, hereditary spinocerebellar ataxias. SWJs have been also documented in monkeys with tectal and cerebellar etiologies, but no studies to date have investigated the occurrence of SWJs in healthy nonhuman primates. Here we set out to determine the characteristics of SWJs in healthy rhesus macaques (Macaca mulatta) during attempted fixation of a small visual target. Our results indicate that SWJs are common in healthy nonhuman primates. We moreover found primate SWJs to share many characteristics with human SWJs, including the relationship between the size of a saccade and its likelihood to be part of a SWJ. One main discrepancy between monkey and human SWJs was that monkey SWJs tended to be more vertical than horizontal, whereas human SWJs have a strong horizontal preference. Yet, our combined data indicate that primate and human SWJs play a similar role in fixation correction, suggesting that they share a comparable coupling mechanism at the oculomotor generation level. These findings constrain the potential brain areas and mechanisms underlying the generation of fixational saccades in human and nonhuman primates.


Subject(s)
Brain/physiology , Fixation, Ocular , Macaca mulatta/physiology , Animals , Humans , Motor Activity/physiology , Saccades
12.
PeerJ ; 1: e19, 2013.
Article in English | MEDLINE | ID: mdl-23638353

ABSTRACT

Magic illusions provide the perceptual and cognitive scientist with a toolbox of experimental manipulations and testable hypotheses about the building blocks of conscious experience. Here we studied several sleight-of-hand manipulations in the performance of the classic "Cups and Balls" magic trick (where balls appear and disappear inside upside-down opaque cups). We examined a version inspired by the entertainment duo Penn & Teller, conducted with three opaque and subsequently with three transparent cups. Magician Teller used his right hand to load (i.e. introduce surreptitiously) a small ball inside each of two upside-down cups, one at a time, while using his left hand to remove a different ball from the upside-down bottom of the cup. The sleight at the third cup involved one of six manipulations: (a) standard maneuver, (b) standard maneuver without a third ball, (c) ball placed on the table, (d) ball lifted, (e) ball dropped to the floor, and (f) ball stuck to the cup. Seven subjects watched the videos of the performances while reporting, via button press, whenever balls were removed from the cups/table (button "1") or placed inside the cups/on the table (button "2"). Subjects' perception was more accurate with transparent than with opaque cups. Perceptual performance was worse for the conditions where the ball was placed on the table, or stuck to the cup, than for the standard maneuver. The condition in which the ball was lifted displaced the subjects' gaze position the most, whereas the condition in which there was no ball caused the smallest gaze displacement. Training improved the subjects' perceptual performance. Occlusion of the magician's face did not affect the subjects' perception, suggesting that gaze misdirection does not play a strong role in the Cups and Balls illusion. Our results have implications for how to optimize the performance of this classic magic trick, and for the types of hand and object motion that maximize magic misdirection.

14.
Proc Natl Acad Sci U S A ; 109(48): 19828-33, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23150557

ABSTRACT

No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer's "inherent expertise bias," a type of experimental bias in which the observer's life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50-100 ms, and we conclude that the Broca-Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch's law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision-although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system's temporal response function will result in significant power savings.


Subject(s)
Light , Visual Perception , Humans , Observer Variation
SELECTION OF CITATIONS
SEARCH DETAIL
...