Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(40): 37547-55, 2001 Oct 05.
Article in English | MEDLINE | ID: mdl-11477109

ABSTRACT

Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) can oxygenate 18-22 carbon polyunsaturated fatty acids, albeit with varying efficiencies. Here we report the crystal structures of eicosapentaenoic acid (EPA, 20:5 n-3) and linoleic acid (LA, 18:2 n-6) bound in the cyclooxygenase active site of Co(3+) protoporphyrin IX-reconstituted ovine PGHS-1 (Co(3+)-oPGHS-1) and compare the effects of active site substitutions on the rates of oxygenation of EPA, LA, and arachidonic acid (AA). Both EPA and LA bind in the active site with orientations similar to those seen previously with AA and dihomo-gamma-linolenic acid (DHLA). For EPA, the presence of an additional double bond (C-17/C-18) causes this substrate to bind in a "strained" conformation in which C-13 is misaligned with respect to Tyr-385, the residue that abstracts hydrogen from substrate fatty acids. Presumably, this misalignment is responsible for the low rate of EPA oxygenation. For LA, the carboxyl half binds in a more extended configuration than AA, which results in positioning C-11 next to Tyr-385. Val-349 and Ser-530, recently identified as important determinants for efficient oxygenation of DHLA by PGHS-1, play similar roles in the oxygenation of EPA and LA. Approximately 750- and 175-fold reductions in the oxygenation efficiency of EPA and LA were observed with V349A oPGHS-1, compared with a 2-fold change for AA. Val-349 contacts C-2 and C-3 of EPA and C-4 of LA orienting the carboxyl halves of these substrates so that the omega-ends are aligned properly for hydrogen abstraction. An S530T substitution decreases the V(max)/K(m) of EPA and LA by 375- and 140-fold. Ser-530 makes six contacts with EPA and four with LA involving C-8 through C-16; these interactions influence the alignment of the substrate for hydrogen abstraction. Interestingly, replacement of Phe-205 increases the volume of the cyclooxygenase site allowing EPA to be oxygenated more efficiently than with native oPGHS-1.


Subject(s)
Eicosapentaenoic Acid/metabolism , Isoenzymes/metabolism , Linoleic Acid/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Arachidonic Acid/chemistry , Arachidonic Acid/metabolism , Binding Sites , Computer Simulation , Crystallography, X-Ray , Cyclooxygenase 1 , Eicosapentaenoic Acid/chemistry , Isoenzymes/chemistry , Leucine/metabolism , Linoleic Acid/chemistry , Models, Molecular , Mutation , Oxidation-Reduction , Phenylalanine/metabolism , Prostaglandin-Endoperoxide Synthases/chemistry , Protein Conformation , Serine/metabolism , Substrate Specificity , Valine/metabolism
2.
J Biol Chem ; 276(13): 10358-65, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11121413

ABSTRACT

Prostaglandin endoperoxide H synthases-1 and -2 (PGHSs) catalyze the committed step in prostaglandin biosynthesis. Both isozymes can oxygenate a variety of related polyunsaturated fatty acids. We report here the x-ray crystal structure of dihomo-gamma-linolenic acid (DHLA) in the cyclooxygenase site of PGHS-1 and the effects of active site substitutions on the oxygenation of DHLA, and we compare these results to those obtained previously with arachidonic acid (AA). DHLA is bound within the cyclooxygenase site in the same overall L-shaped conformation as AA. C-1 and C-11 through C-20 are in the same positions for both substrates, but the positions of C-2 through C-10 differ by up to 1.74 A. In general, substitutions of active site residues caused parallel changes in the oxygenation of both AA and DHLA. Two significant exceptions were Val-349 and Ser-530. A V349A substitution caused an 800-fold decrease in the V(max)/K(m) for DHLA but less than a 2-fold change with AA; kinetic evidence indicates that C-13 of DHLA is improperly positioned with respect to Tyr-385 in the V349A mutant thereby preventing efficient hydrogen abstraction. Val-349 contacts C-5 of DHLA and appears to serve as a structural bumper positioning the carboxyl half of DHLA, which, in turn, positions properly the omega-half of this substrate. A V349A substitution in PGHS-2 has similar, minor effects on the rates of oxygenation of AA and DHLA. Thus, Val-349 is a major determinant of substrate specificity for PGHS-1 but not for PGHS-2. Ser-530 also influences the substrate specificity of PGHS-1; an S530T substitution causes 40- and 750-fold decreases in oxygenation efficiencies for AA and DHLA, respectively.


Subject(s)
8,11,14-Eicosatrienoic Acid/chemistry , 8,11,14-Eicosatrienoic Acid/genetics , Prostaglandin-Endoperoxide Synthases/chemistry , Prostaglandin-Endoperoxide Synthases/genetics , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Arachidonic Acid/chemistry , Arachidonic Acid/metabolism , Binding Sites , Blotting, Western , COS Cells , Crystallography, X-Ray , DNA Mutational Analysis , Fatty Acids/metabolism , Kinetics , Models, Molecular , Mutation , Oxygen/metabolism , Peroxidase/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Binding , Protein Conformation , Serine/chemistry , Substrate Specificity , Transfection , Valine/chemistry
3.
J Biol Chem ; 276(13): 10347-57, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11121412

ABSTRACT

Prostaglandin endoperoxide H synthases (PGHSs) catalyze the committed step in the biosynthesis of prostaglandins and thromboxane, the conversion of arachidonic acid, two molecules of O(2), and two electrons to prostaglandin endoperoxide H(2) (PGH(2)). Formation of PGH(2) involves an initial oxygenation of arachidonate to yield PGG(2) catalyzed by the cyclooxygenase activity of the enzyme and then a reduction of the 15-hydroperoxyl group of PGG(2) to form PGH(2) catalyzed by the peroxidase activity. The cyclooxygenase active site is a hydrophobic channel that protrudes from the membrane binding domain into the core of the globular domain of PGHS. In the crystal structure of Co(3+)-heme ovine PGHS-1 complexed with arachidonic acid, 19 cyclooxygenase active site residues are predicted to make a total of 50 contacts with the substrate (Malkowski, M. G, Ginell, S., Smith, W. L., and Garavito, R. M. (2000) Science 289, 1933-1937); two of these are hydrophilic, and 48 involve hydrophobic interactions. We performed mutational analyses to determine the roles of 14 of these residues and 4 other closely neighboring residues in arachidonate binding and oxygenation. Mutants were analyzed for peroxidase and cyclooxygenase activity, and the products formed by various mutants were characterized. Overall, the results indicate that cyclooxygenase active site residues of PGHS-1 fall into five functional categories as follows: (a) residues directly involved in hydrogen abstraction from C-13 of arachidonate (Tyr-385); (b) residues essential for positioning C-13 of arachidonate for hydrogen abstraction (Gly-533 and Tyr-348); (c) residues critical for high affinity arachidonate binding (Arg-120); (d) residues critical for positioning arachidonate in a conformation so that when hydrogen abstraction does occur the molecule is optimally arranged to yield PGG(2) versus monohydroperoxy acid products (Val-349, Trp-387, and Leu-534); and (e) all other active site residues, which individually make less but measurable contributions to optimal catalytic efficiency.


Subject(s)
Arachidonic Acid/metabolism , Isoenzymes/chemistry , Isoenzymes/physiology , Oxygen/metabolism , Prostaglandin-Endoperoxide Synthases/chemistry , Prostaglandin-Endoperoxide Synthases/physiology , Amino Acids/chemistry , Animals , Binding Sites , Blotting, Western , COS Cells , Catalysis , Cell Membrane/metabolism , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Cyclooxygenase 1 , DNA Mutational Analysis , Dose-Response Relationship, Drug , Esters/metabolism , Hydrogen , Kinetics , Leucine/chemistry , Methionine/chemistry , Models, Biological , Models, Chemical , Peroxidase/metabolism , Phenylalanine/chemistry , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Sheep , Time Factors , Transfection , Tryptophan/chemistry
5.
J Biol Chem ; 274(24): 17109-14, 1999 Jun 11.
Article in English | MEDLINE | ID: mdl-10358065

ABSTRACT

Arg-120 is located near the mouth of the hydrophobic channel that forms the cyclooxygenase active site of prostaglandin endoperoxide H synthases (PGHSs)-1 and -2. Replacement of Arg-120 of ovine PGHS-1 with a glutamine increases the apparent Km of PGHS-1 for arachidonate by 1,000-fold (Bhattacharyya, D. K., Lecomte, M., Rieke, C. J., Garavito, R. M., and Smith, W. L. (1996) J. Biol. Chem. 271, 2179-2184). This and other evidence indicate that the guanido group of Arg-120 forms an ionic bond with the carboxylate group of arachidonate and that this interaction is an important contributor to the overall strength of arachidonate binding to PGHS-1. In contrast, we report here that R120Q human PGHS-2 (hPGHS-2) and native hPGHS-2 have very similar kinetic properties, but R120L hPGHS-2 catalyzes the oxygenation of arachidonate inefficiently. Our data indicate that the guanido group of Arg-120 of hPGHS-2 interacts with arachidonate through a hydrogen bond rather than an ionic bond and that this interaction is much less important for arachidonate binding to PGHS-2 than to PGHS-1. The Km values of PGHS-1 and -2 for arachidonate are the same, and all but one of the core residues of the active sites of the two isozymes are identical. Thus, the results of our studies of Arg-120 of PGHS-1 and -2 imply that interactions involved in the binding of arachidonate to PGHS-1 and -2 are quite different and that residues within the hydrophobic cyclooxygenase channel must contribute more significantly to arachidonate binding to PGHS-2 than to PGHS-1. As observed previously with R120Q PGHS-1, flurbiprofen was an ineffective inhibitor of R120Q hPGHS-2. PGHS-2-specific inhibitors including NS398, DuP-697, and SC58125 had IC50 values for the R120Q mutant that were up to 1,000-fold less than those observed for native hPGHS-2; thus, the positively charged guanido group of Arg-120 interferes with the binding of these compounds. NS398 did not cause time-dependent inhibition of R120Q hPGHS-2, whereas DuP-697 and SC58125 were time-dependent inhibitors. Thus, Arg-120 is important for the time-dependent inhibition of hPGHS-2 by NS398 but not by DuP-697 or SC58125.


Subject(s)
Arginine , Catalytic Domain , Cyclooxygenase Inhibitors/metabolism , Fatty Acids/metabolism , Isoenzymes/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Arachidonic Acid/metabolism , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Humans , Hydroxy Acids/chemistry , Isoenzymes/genetics , Membrane Proteins , Models, Molecular , Mutagenesis, Site-Directed , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Transfection
6.
J Biol Chem ; 271(4): 2179-84, 1996 Jan 26.
Article in English | MEDLINE | ID: mdl-8567676

ABSTRACT

Examination of the crystal structure of the ovine prostaglandin endoperoxide synthase-1 (PGHS-1)/S- flurbiprofen complex (Picot, D., Loll, P.J., and Garavito, R.M. (1994) Nature 367, 243-2491) suggests (a) that the carboxyl group of arachidonic acid interacts with the arginino group of Arg120; (b) that Arg120 forms an important salt bridge with Glu524; and (c) that Tyr355, which is in close proximity to Arg120, could determine the stereochemical specificity of PGHS-1 toward 2-phenylpropionic acid inhibitors. To test these concepts, we used site-directed mutagenesis to prepare ovine PGHS-1 mutants having modifications of Arg120 (R120K, R120Q, R120E), Glu524 (E524D, E524Q, E524K), and Tyr355 (Y355F) and examined the properties of the mutant enzymes expressed in COS-1 cells. All of the mutants retained at least part of their cyclooxygenase and peroxidase activities except the R120E mutant, which had no detectable activity. The Km values of the R120K and R120Q mutants with arachidonic acid were 87 and 3300 microM, respectively, versus 4 microM for native PGHS-1. The R120Q mutant failed to undergo suicide inactivation during catalysis or time-dependent inhibition by flurbiprofen. These results are consistent with Arg120 binding the carboxylate group of arachidonate and suggest that interaction of the carboxylate group of substrates and inhibitors with Arg120 is necessary for suicide inactivation and time-dependent inhibition, respectively. The Km values for the E524D, E524Q, and E524K mutants were not significantly different from values obtained for the native PGHS-1, suggesting that this residue is not importantly involved in catalysis or substrate binding. The effect of modifications of Arg120 and Tyr355 on the stereospecificity of inhibitor binding was determined. Ratios of IC50 values for cyclooxygenase inhibition by D- and L-ibuprofen, a competitive cyclooxygenase inhibitor, were 32, 67, and 7.1 for native PGHS-1, R120Q PGHS-1, and Y355F PGHS-1, respectively. The decreased stereochemical specificity observed with the Y355F PGHS-1 mutant suggests that Tyr355 is a determinant of the stereospecificity of PGHS-1 toward inhibitors of the 2-phenylpropionic acid class.


Subject(s)
Arachidonic Acid/chemistry , Binding Sites , Cyclooxygenase Inhibitors/chemistry , Phenylpropionates/chemistry , Prostaglandin-Endoperoxide Synthases/chemistry , Amino Acid Sequence , Animals , Arginine/chemistry , Base Sequence , DNA Primers/chemistry , Enzyme Inhibitors/chemistry , Flurbiprofen/chemistry , Glutamates/chemistry , Ibuprofen/chemistry , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Sheep , Structure-Activity Relationship , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...