Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 112(4): 040504, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24580428

ABSTRACT

We report on experiments demonstrating the reversible mapping of heralded single photons to long-lived collective optical atomic excitations stored in a Pr3+:Y2SiO5 crystal. A cavity-enhanced spontaneous down-conversion source is employed to produce widely nondegenerate narrow-band (≈2 MHz) photon pairs. The idler photons, whose frequency is compatible with telecommunication optical fibers, are used to herald the creation of the signal photons, compatible with the Pr3+ transition. The signal photons are stored and retrieved using the atomic frequency comb protocol. We demonstrate storage times up to 4.5 µs while preserving nonclassical correlations between the heralding and the retrieved photon. This is more than 20 times longer than in previous realizations in solid state devices, and implemented in a system ideally suited for the extension to spin-wave storage.

2.
Phys Rev Lett ; 110(22): 220502, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23767704

ABSTRACT

We report on a source of ultranarrow-band photon pairs generated by widely nondegenerate cavity-enhanced spontaneous down-conversion. The source is designed to be compatible with Pr(3+) solid state quantum memories and telecommunication optical fibers, with signal and idler photons close to 606 nm and 1436 nm, respectively. Both photons have a spectral bandwidth around 2 MHz, matching the bandwidth of Pr(3+) doped quantum memories. This source is ideally suited for long distance quantum communication architectures involving solid state quantum memories.

SELECTION OF CITATIONS
SEARCH DETAIL
...