Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 356: 124353, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866318

ABSTRACT

The development of high-resolution spatial and spatiotemporal models of air pollutants is essential for exposure science and epidemiological applications. While fixed-site sampling has conventionally provided input data for statistical predictive models, the evolving mobile monitoring method offers improved spatial resolution, ideal for measuring pollutants with high spatial variability such as ultrafine particles (UFP). The Quebec Air Pollution Exposure and Epidemiology (QAPEE) study measured and modelled the spatial and spatiotemporal distributions of understudied pollutants, such as UFPs, black carbon (BC), and brown carbon (BrC), along with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in Quebec City, Canada. We conducted a combined fixed-site (NO2 and O3) and mobile monitoring (PM2.5, BC, BrC, and UFPs) campaign over 10-months. Mobile monitoring routes were monitored on a weekly basis between 8am-10am and designed using location/allocation modelling. Seasonal fixed-site sampling campaigns captured continuous 24-h measurements over two-week periods. Generalized Additive Models (GAMs), which combined data on pollution concentrations with spatial, temporal, and spatiotemporal predictor variables were used to model and predict concentration surfaces. Annual models for PM2.5, NO2, O3 as well as seven of the smallest size fractions in the UFP range, had high out of sample predictive accuracy (range r2: 0.54-0.86). Varying spatial patterns were observed across UFP size ranges measured as Particle Number Counts (PNC). The monthly spatiotemporal models for PM2.5 (r2 = 0.49), BC (r2 = 0.27), BrC (r2 = 0.29), and PNC (r2 = 0.49) had moderate or moderate-low out of sample predictive accuracy. We conducted a sensitivity analysis and found that the minimum number of 'n visits' (mobile monitoring sessions) required to model annually representative air pollution concentrations was between 24 and 32 visits dependent on the pollutant. This study provides a single source of exposure models for a comprehensive set of air pollutants in Quebec City, Canada. These exposure models will feed into epidemiological research on the health impacts of ambient UFPs and other pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...