Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 19(11): 3343-54, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23765608

ABSTRACT

Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to produce site-specific frequency distributions of occurrence probabilities across a species' range. We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 30.1-42.5 thousand km; this was predicted to decline to 0.5-7.9 thousand km by the 2080s. Projections for the 2080s showed that the great majority of stream segments would be unsuitable with high certainty, regardless of the climate data set or bull trout model employed. The largest contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution of possible outcomes for a species, and permits ready graphical display of uncertainty for individual locations and of total habitat.


Subject(s)
Climate Change , Models, Theoretical , Salmonidae , Animals , Demography , Forecasting , Logistic Models , Monte Carlo Method , Northwestern United States , Uncertainty
2.
Glob Chang Biol ; 19(3): 742-51, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23504832

ABSTRACT

Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments are difficult because model predictions are either untestable or so imprecise that definitive answers may not be obtained within timespans relevant for effective conservation. Here, we develop the equations for calculating isotherm shift rates (ISRs) in streams that can be used to represent historic or future warming scenarios and be calibrated to individual streams using local measurements of stream temperature and slope. A set of reference equations and formulas are provided for application to most streams. Example calculations for streams with lapse rates of 0.8 °C/100 m and long-term warming rates of 0.1-0.2 °C decade(-1) indicate that isotherms shift upstream at 0.13-1.3 km decade(-1) in steep streams (2-10% slope) and 1.3-25 km decade(-1) in flat streams (0.1-1% slope). Used more generally with global scenarios, the equations predict isotherms shifted 1.5-43 km in many streams during the 20th Century as air temperatures increased by 0.6 °C and would shift another 5-143 km in the first half of the 21st Century if midrange projections of a 2 °C air temperature increase occur. Variability analysis suggests that short-term variation associated with interannual stream temperature changes will mask long-term isotherm shifts for several decades in most locations, so extended biological monitoring efforts are required to document anticipated distribution shifts. Resampling of historical sites could yield estimates of biological responses in the short term and should be prioritized to validate bioclimatic models and develop a better understanding about the effects of temperature increases on stream biotas.


Subject(s)
Climate Change , Ecosystem , Animals , Fishes
3.
Proc Natl Acad Sci U S A ; 109(52): 21201-7, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23197837

ABSTRACT

Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure--without explicitly considering food webs--has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.


Subject(s)
Conservation of Natural Resources , Food Chain , Rivers , Animals , Aquatic Organisms , Facility Design and Construction , United States
4.
Proc Natl Acad Sci U S A ; 108(34): 14175-80, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21844354

ABSTRACT

Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km(2)), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.


Subject(s)
Climate Change , Ecosystem , Temperature , Trout/growth & development , Water Movements , Animals , Models, Biological , Species Specificity , United States
5.
Ecol Appl ; 20(5): 1350-71, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20666254

ABSTRACT

Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions, but downscaling is difficult in complex terrains given diverse microclimates and mediation of stream heat budgets by local conditions. We compiled a stream temperature database (n = 780) for a 2500-km river network in central Idaho to assess possible trends in summer temperatures and thermal habitat for two native salmonid species from 1993 to 2006. New spatial statistical models that account for network topology were parameterized with these data and explained 93% and 86% of the variation in mean stream temperatures and maximas, respectively. During our study period, basin average mean stream temperatures increased by 0.38 degrees C (0.27 degrees C/decade), and maximas increased by 0.48 degrees C (0.34 degrees C/decade), primarily due to long-term (30-50 year) trends in air temperatures and stream flows. Radiation increases from wildfires accounted for 9% of basin-scale temperature increases, despite burning 14% of the basin. Within wildfire perimeters, however, stream temperature increases were 2-3 times greater than basin averages, and radiation gains accounted for 50% of warming. Thermal habitat for rainbow trout (Oncorhynchus mykiss) was minimally affected by temperature increases, except for small shifts towards higher elevations. Bull trout (Salvelinus confluentus), in contrast, were estimated to have lost 11-20% (8-16%/decade) of the headwater stream lengths that were cold enough for spawning and early juvenile rearing, with the largest losses occurring in the coldest habitats. Our results suggest that a warming climate has begun to affect thermal conditions in streams and that impacts to biota will be specific to both species and context. Where species are at risk, conservation actions should be guided based on considerations of restoration opportunity and future climatic effects. To refine predictions based on thermal effects, more work is needed to understand mechanisms associated with biological responses, climate effects on other habitat features, and habitat configurations that confer population resilience.


Subject(s)
Climate , Ecosystem , Fires , Salmon , Animals , Fresh Water
6.
Ecol Appl ; 20(4): 954-66, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20597282

ABSTRACT

Unrestricted livestock grazing can degrade aquatic ecosystems, and its effects on native vertebrate species are generally mediated by changes to physical habitat. Recently, high estimated rates of cattle trampling on artificial redds within federal grazing allotments in southwestern Montana, USA, has raised concern that direct mortality from trampling may contribute to imperilment of native westslope cutthroat trout (Oncorhynchus clarkii lewisi). To explore the implications of cattle trampling, we built two mathematical models. First we used a temperature-driven model of egg-to-fry mortality representative of the developmental stages during which embryos would be vulnerable to trampling. Cattle trampling was an additional source of mortality (beyond natural mortality), and we modeled egg-to-fry mortality across a range of trampling rates (25-125% per month) for scenarios assuming low (0.60), moderate (0.81), and high (0.95) natural mortality. We then used a matrix model to determine how trampling affected population growth (lambda), assuming initially stable (lambda = 1.008) or slow-growing populations (lambda = 1.025 and 1.05). Cattle trampling concentrated over a few days when the embryos were most sensitive caused greater egg-to-fry mortality than when the same amount of trampling occurred over one month. Trampling caused a large increase in egg-to-fry mortality when that natural mortality was low, but the overall population-level effect was far less than might have been anticipated from the rate of trampling itself. Nonetheless, small reductions in population growth rate could be biologically significant for populations with little or no demographic resilience, and trampling rates as low as 25% could lead to negative population growth. The rapid reduction in resilience with increased trampling rates (>50%) means that even growing populations are less likely to recover from periodic fluctuations. The overall risk posed by trampling will depend on whether cutthroat trout populations face concurrent threats that have already reduced their abundance and resilience. Biologists can potentially use the egg-to-fry model and thermograph data to identify dates when limiting cattle presence in or near stream habitats would likely reduce mortality from trampling. Evaluation of grazing policies on federal lands may be needed to ensure that species conservation and land use concerns are equitably balanced.


Subject(s)
Behavior, Animal , Cattle , Models, Biological , Oncorhynchus/embryology , Animals , Ecosystem , Montana , Population Dynamics , Temperature
7.
Conserv Biol ; 23(4): 859-70, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19210302

ABSTRACT

Conservation biologists often face the trade-off that increasing connectivity in fragmented landscapes to reduce extinction risk of native species can foster invasion by non-native species that enter via the corridors created, which can then increase extinction risk. This dilemma is acute for stream fishes, especially native salmonids, because their populations are frequently relegated to fragments of headwater habitat threatened by invasion from downstream by 3 cosmopolitan non-native salmonids. Managers often block these upstream invasions with movement barriers, but isolation of native salmonids in small headwater streams can increase the threat of local extinction. We propose a conceptual framework to address this worldwide problem that focuses on 4 main questions. First, are populations of conservation value present (considering evolutionary legacies, ecological functions, and socioeconomic benefits as distinct values)? Second, are populations vulnerable to invasion and displacement by non-native salmonids? Third, would these populations be threatened with local extinction if isolated with barriers? And, fourth, how should management be prioritized among multiple populations? We also developed a conceptual model of the joint trade-off of invasion and isolation threats that considers the opportunities for managers to make strategic decisions. We illustrated use of this framework in an analysis of the invasion-isolation trade-off for native cutthroat trout (Oncorhynchus clarkii) in 2 contrasting basins in western North America where invasion and isolation are either present and strong or farther away and apparently weak. These cases demonstrate that decisions to install or remove barriers to conserve native salmonids are often complex and depend on conservation values, environmental context (which influences the threat of invasion and isolation), and additional socioeconomic factors. Explicit analysis with tools such as those we propose can help managers make sound decisions in such complex circumstances.


Subject(s)
Conservation of Natural Resources , Salmonidae , Animals , Ecosystem , Fresh Water
8.
Ecol Appl ; 17(2): 352-64, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17489244

ABSTRACT

Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities.


Subject(s)
Ecosystem , Reproduction/physiology , Salmon/physiology , Animals , Environmental Monitoring , Idaho
9.
Conserv Biol ; 20(4): 994-1004, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16922216

ABSTRACT

We reviewed the behavior of wildfire in riparian zones, primarily in the western United States, and the potential ecological consequences of postfire logging. Fire behavior in riparian zones is complex, but many aquatic and riparian organisms exhibit a suite of adaptations that allow relatively rapid recovery after fire. Unless constrained by other factors, fish tend to rebound relatively quickly, usually within a decade after a wildfire. Additionally, fire and subsequent erosion events contribute wood and coarse sediment that can create and maintain productive aquatic habitats over time. The potential effects of postfire logging in riparian areas depend on the landscape context and disturbance history of a site; however available evidence suggests two key management implications: (1) fire in riparian areas creates conditions that may not require intervention to sustain the long-term productivity of the aquatic network and (2) protection of burned riparian areas gives priority to what is left rather than what is removed. Research is needed to determine how postfire logging in riparian areas has affected the spread of invasive species and the vulnerability of upland forests to insect and disease outbreaks and how postfire logging will affect the frequency and behavior of future fires. The effectiveness of using postfire logging to restore desired riparian structure and function is therefore unproven, but such projects are gaining interest with the departure of forest conditions from those that existed prior to timber harvest, fire suppression, and climate change. In the absence of reliable information about the potential consequence of postfire timber harvest, we conclude that providing postfire riparian zones with the same environmental protections they received before they burned isjustified ecologically Without a commitment to monitor management experiments, the effects of postfire riparian logging will remain unknown and highly contentious.


Subject(s)
Fires , Forestry/methods , Geography , Trees , Water , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Disasters , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...