Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Sci Adv ; 8(47): eade1942, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417539

ABSTRACT

In Tibetans, noncoding alleles in EPAS1-whose protein product hypoxia-inducible factor 2α (HIF-2α) drives the response to hypoxia-carry strong signatures of positive selection; however, their functional mechanism has not been systematically examined. Here, we report that high-altitude alleles disrupt the activity of four EPAS1 enhancers in one or more cell types. We further characterize one enhancer (ENH5) whose activity is both allele specific and hypoxia dependent. Deletion of ENH5 results in down-regulation of EPAS1 and HIF-2α targets in acute hypoxia and in a blunting of the transcriptional response to sustained hypoxia. Deletion of ENH5 in mice results in dysregulation of gene expression across multiple tissues. We propose that pleiotropic adaptive effects of the Tibetan alleles in EPAS1 underlie the strong selective signal at this gene.

2.
Front Mol Biosci ; 9: 956935, 2022.
Article in English | MEDLINE | ID: mdl-36188221

ABSTRACT

Hypoxia plays a crucial role in tumorigenesis and drug resistance, and it is recognised as a major factor affecting patient clinical outcome. Therefore, the detection of hypoxic areas within the tumour micro-environment represents a useful way to monitor tumour growth and patients' responses to treatments, properly guiding the choice of the most suitable therapy. To date, non-invasive hypoxia imaging probes have been identified, but their applicability in vivo is strongly limited due to an inadequate resistance to the low oxygen concentration and the acidic pH of the tumour micro-environment. In this regard, nucleic acid aptamers represent very powerful tools thanks to their peculiar features, including high stability to harsh conditions and a small size, resulting in easy and efficient tumour penetration. Here, we describe a modified cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach that allows the isolation of specific RNA aptamers for the detection of the hypoxic phenotype in breast cancer (BC) cells. We demonstrated the effectiveness of the proposed method in isolating highly stable aptamers with an improved and specific binding to hypoxic cells. To our knowledge, this is the first example of a cell-SELEX approach properly designed and modified to select RNA aptamers against hypoxia-related epitopes expressed on tumour cell surfaces. The selected aptamers may provide new effective tools for targeting hypoxic areas within the tumour with great clinical potential.

4.
Nat Commun ; 13(1): 1203, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260549

ABSTRACT

Present-day Tibetans have adapted both genetically and culturally to the high altitude environment of the Tibetan Plateau, but fundamental questions about their origins remain unanswered. Recent archaeological and genetic research suggests the presence of an early population on the Plateau within the past 40 thousand years, followed by the arrival of subsequent groups within the past 10 thousand years. Here, we obtain new genome-wide data for 33 ancient individuals from high elevation sites on the southern fringe of the Tibetan Plateau in Nepal, who we show are most closely related to present-day Tibetans. They derive most of their ancestry from groups related to Late Neolithic populations at the northeastern edge of the Tibetan Plateau but also harbor a minor genetic component from a distinct and deep Paleolithic Eurasian ancestry. In contrast to their Tibetan neighbors, present-day non-Tibetan Tibeto-Burman speakers living at mid-elevations along the southern and eastern margins of the Plateau form a genetic cline that reflects a distinct genetic history. Finally, a comparison between ancient and present-day highlanders confirms ongoing positive selection of high altitude adaptive alleles.


Subject(s)
Adaptation, Physiological , Genome , Adaptation, Physiological/genetics , Altitude , History, Ancient , Humans , Nepal , Tibet
5.
Proc Biol Sci ; 286(1896): 20182541, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30963935

ABSTRACT

A fundamental question about adaptation in a population is the time of onset of the selective pressure acting on beneficial alleles. Inferring this time, in turn, depends on the selection model. We develop a framework of approximate Bayesian computation (ABC) that enables the use of the full site frequency spectrum and haplotype structure to test the goodness-of-fit of selection models and estimate the timing of selection under varying population size scenarios. We show that our method has sufficient power to distinguish natural selection from neutrality even if relatively old selection increased the frequency of a pre-existing allele from 20% to 50% or from 40% to 80%. Our ABC can accurately estimate the time of onset of selection on a new mutation. However, estimates are prone to bias under the standing variation model, possibly due to the uncertainty in the allele frequency at the onset of selection. We further extend our approach to take advantage of ancient DNA data that provides information on the allele frequency path of the beneficial allele. Applying our ABC, including both modern and ancient human DNA data, to four pigmentation alleles in Europeans, we detected selection on standing variants that occurred after the dispersal from Africa even though models of selection on a new mutation were initially supported for two of these alleles without the ancient data.


Subject(s)
DNA, Ancient/analysis , Gene Frequency , Haplotypes/genetics , Human Migration , Selection, Genetic , Skin Pigmentation/genetics , Bayes Theorem , Europe , Humans , Models, Genetic , Population Density , Time Factors
6.
Sci Adv ; 4(11): eaau4921, 2018 11.
Article in English | MEDLINE | ID: mdl-30417096

ABSTRACT

The peopling of the Andean highlands above 2500 m in elevation was a complex process that included cultural, biological, and genetic adaptations. Here, we present a time series of ancient whole genomes from the Andes of Peru, dating back to 7000 calendar years before the present (BP), and compare them to 42 new genome-wide genetic variation datasets from both highland and lowland populations. We infer three significant features: a split between low- and high-elevation populations that occurred between 9200 and 8200 BP; a population collapse after European contact that is significantly more severe in South American lowlanders than in highland populations; and evidence for positive selection at genetic loci related to starch digestion and plausibly pathogen resistance after European contact. We do not find selective sweep signals related to known components of the human hypoxia response, which may suggest more complex modes of genetic adaptation to high altitude.


Subject(s)
Adaptation, Physiological/genetics , DNA, Ancient/analysis , Genetics, Population , Genome, Human , Hypoxia/genetics , Indians, South American/genetics , Polymorphism, Single Nucleotide , Genotype , Humans , Population Dynamics , Sequence Analysis, DNA , Whole Genome Sequencing
7.
Proc Natl Acad Sci U S A ; 115(48): E11349-E11358, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429326

ABSTRACT

Biomechanical cues dynamically control major cellular processes, but whether genetic variants actively participate in mechanosensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies (GWAS) have identified chromosome 1p32.2 as strongly associated with CAD/IS; however, the causal mechanism related to this locus remains unknown. Using statistical analyses, assay of transposase accessible chromatin with whole-genome sequencing (ATAC-seq), H3K27ac/H3K4me2 ChIP with whole-genome sequencing (ChIP-seq), and CRISPR interference in human aortic endothelial cells (HAECs), our results demonstrate that rs17114036, a common noncoding polymorphism at 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR-Cas9-based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional shear stress by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus (caQTL) mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays demonstrate that CAD/IS-protective allele at rs17114036 in PLPP3 intron 5 confers increased endothelial enhancer activity. ChIP-PCR and luciferase assays show that CAD/IS-protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2 (KLF2), which increases the enhancer activity under unidirectional flow. These results demonstrate that a human SNP contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related cis-regulatory elements provide a previously unappreciated layer of regulatory control in cellular mechanosensing mechanisms.


Subject(s)
Brain Ischemia/genetics , Chromosomes, Human, Pair 1/genetics , Coronary Artery Disease/genetics , Endothelial Cells/physiology , Genetic Variation , Stroke/genetics , Alleles , Blood Flow Velocity , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/metabolism , Coronary Artery Disease/physiopathology , Genome-Wide Association Study , Hemodynamics , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mechanotransduction, Cellular , Polymorphism, Single Nucleotide , Stroke/metabolism , Stroke/physiopathology
8.
PLoS Genet ; 14(9): e1007650, 2018 09.
Article in English | MEDLINE | ID: mdl-30188897

ABSTRACT

Adaptive evolution in humans has rarely been characterized for its whole set of components, i.e. selective pressure, adaptive phenotype, beneficial alleles and realized fitness differential. We combined approaches for detecting polygenic adaptations and for mapping the genetic bases of physiological and fertility phenotypes in approximately 1000 indigenous ethnically Tibetan women from Nepal, adapted to high altitude. The results of genome-wide association analyses and tests for polygenic adaptations showed evidence of positive selection for alleles associated with more pregnancies and live births and evidence of negative selection for those associated with higher offspring mortality. Lower hemoglobin level did not show clear evidence for polygenic adaptation, despite its strong association with an EPAS1 haplotype carrying selective sweep signals.


Subject(s)
Acclimatization/genetics , Asian People/genetics , Haplotypes/physiology , Multifactorial Inheritance/physiology , Selection, Genetic/physiology , Adult , Aged , Aged, 80 and over , Altitude , Basic Helix-Loop-Helix Transcription Factors/genetics , Female , Genome-Wide Association Study , Hemoglobins/analysis , Humans , Middle Aged , Nepal , Tibet
9.
Cancer Treat Rev ; 63: 135-143, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29304463

ABSTRACT

The side effects of anticancer drugs still play a critical role in survival and quality of life. Although the recent progresses of cancer therapies have significantly improved the prognosis of oncologic patients, side effects of antineoplastic treatments are still responsible for the increased mortality of cancer survivors. Cardiovascular toxicity is the most dangerous adverse effect induced by anticancer therapies. A survey conducted by the National Health and Nutrition Examination, showed that 1807 cancer survivors followed up for seven years: 51% died of cancer and 33% of heart disease (Vejpongsa and Yeh, 2014). Moreover, the risk of cardiotoxicity persists even with the targeted therapy, the newer type of cancer treatment, due to the presence of on-target and off-target effects related to this new class of drugs. The potential cardiovascular toxicity of anticancer agents includes: QT prolongation, arrhythmias, myocardial ischemia, stroke, hypertension (HTN), thromboembolism, left ventricular dysfunction and heart failure (HF). Compared to other cardiovascular disorders, the interest in QT prolongation and its complications is fairly recent. However, oncologists have to deal with it and to evaluate the risk-benefit ratio before starting the treatment or during the same. Electrolyte abnormalities, low levels of serum potassium and several drugs may favour the acquired QT prolongation. Treatment of marked QT prolongation includes cardiac monitoring, caution in the use or suspension of cancer drugs and correction of electrolyte abnormalities (hypokalaemia, hypomagnesaemia, hypocalcaemia). Syndrome of QT prolongation can be associated with potentially fatal cardiac arrhythmias and its treatment consists of intravenous administration of magnesium sulphate and the use of electrical cardioversion.


Subject(s)
Antineoplastic Agents/adverse effects , Arrhythmias, Cardiac/chemically induced , Cardiotoxicity/etiology , Drug-Related Side Effects and Adverse Reactions/etiology , Algorithms , Humans
10.
Sci Rep ; 7(1): 15512, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138459

ABSTRACT

While much research attention has focused on demographic processes that enabled human diffusion on the Tibetan plateau, little is known about more recent colonization of Southern Himalayas. In particular, the history of migrations, admixture and/or isolation of populations speaking Tibeto-Burman languages, which is supposed to be quite complex and to have reshaped patterns of genetic variation on both sides of the Himalayan arc, remains only partially elucidated. We thus described the genomic landscape of previously unsurveyed Tibeto-Burman (i.e. Sherpa and Tamang) and Indo-Aryan communities from remote Nepalese valleys. Exploration of their genomic relationships with South/East Asian populations provided evidence for Tibetan admixture with low-altitude East Asians and for Sherpa isolation. We also showed that the other Southern Himalayan Tibeto-Burmans derived East Asian ancestry not from the Tibetan/Sherpa lineage, but from low-altitude ancestors who migrated from China plausibly across Northern India/Myanmar, having experienced extensive admixture that reshuffled the ancestral Tibeto-Burman gene pool. These findings improved the understanding of the impact of gene flow/drift on the evolution of high-altitude Himalayan peoples and shed light on migration events that drove colonization of the southern Himalayan slopes, as well as on the role played by different Tibeto-Burman groups in such a complex demographic scenario.


Subject(s)
DNA/genetics , Ethnicity/genetics , Gene Flow , Genetic Drift , Human Migration/trends , DNA/classification , Ethnicity/statistics & numerical data , Female , Genetic Variation , Humans , India , Male , Myanmar , Nepal , Phylogeography , Tibet
12.
Evol Med Public Health ; 2017(1): 82-96, 2017.
Article in English | MEDLINE | ID: mdl-28567284

ABSTRACT

Background and objectives: Tibetans have distinctively low hemoglobin concentrations at high altitudes compared with visitors and Andean highlanders. This study hypothesized that natural selection favors an unelevated hemoglobin concentration among Tibetans. It considered nonheritable sociocultural factors affecting reproductive success and tested the hypotheses that a higher percent of oxygen saturation of hemoglobin (indicating less stress) or lower hemoglobin concentration (indicating dampened response) associated with higher lifetime reproductive success. Methodology: We sampled 1006 post-reproductive ethnically Tibetan women residing at 3000-4100 m in Nepal. We collected reproductive histories by interviews in native dialects and noninvasive physiological measurements. Regression analyses selected influential covariates of measures of reproductive success: the numbers of pregnancies, live births and children surviving to age 15. Results: Taking factors such as marriage status, age of first birth and access to health care into account, we found a higher percent of oxygen saturation associated weakly and an unelevated hemoglobin concentration associated strongly with better reproductive success. Women who lost all their pregnancies or all their live births had hemoglobin concentrations significantly higher than the sample mean. Elevated hemoglobin concentration associated with a lower probability a pregnancy progressed to a live birth. Conclusions and implications: These findings are consistent with the hypothesis that unelevated hemoglobin concentration is an adaptation shaped by natural selection resulting in the relatively low hemoglobin concentration of Tibetans compared with visitors and Andean highlanders.

13.
PLoS One ; 12(4): e0175885, 2017.
Article in English | MEDLINE | ID: mdl-28448508

ABSTRACT

Indigenous populations of the Tibetan plateau have attracted much attention for their good performance at extreme high altitude. Most genetic studies of Tibetan adaptations have used genetic variation data at the genome scale, while genetic inferences about their demography and population structure are largely based on uniparental markers. To provide genome-wide information on population structure, we analyzed new and published data of 338 individuals from indigenous populations across the plateau in conjunction with worldwide genetic variation data. We found a clear signal of genetic stratification across the east-west axis within Tibetan samples. Samples from more eastern locations tend to have higher genetic affinity with lowland East Asians, which can be explained by more gene flow from lowland East Asia onto the plateau. Our findings corroborate a previous report of admixture signals in Tibetans, which were based on a subset of the samples analyzed here, but add evidence for isolation by distance in a broader geospatial context.


Subject(s)
Asian People/genetics , Genome, Human , Gene Flow , Genetics, Population , Genotype , Humans , Principal Component Analysis , Tibet
14.
J Steroid Biochem Mol Biol ; 168: 49-59, 2017 04.
Article in English | MEDLINE | ID: mdl-28163244

ABSTRACT

Colorectal cancer (CRC) is a significant health burden especially among African Americans (AA). Epidemiological studies have correlated low serum vitamin D with CRC risk, and, while hypovitaminosis D is more common and more severe in AA, the mechanisms by which vitamin D modulates CRC risk and how these differ by race are not well understood. Active vitamin D (1α,25(OH)2D3) has chemoprotective effects primarily through transcriptional regulation of target genes in the colon. We hypothesized that transcriptional response to 1α,25(OH)2D3 differs between AA and European Americans (EA) irrespective of serum vitamin D and that regulatory variants could impact transcriptional response. We treated ex vivo colon cultures from 34 healthy subjects (16 AA and 18 EA) with 0.1µM 1α,25(OH)2D3 or vehicle control for 6h and performed genome-wide transcriptional profiling. We found 8 genes with significant differences in transcriptional response to 1α,25(OH)2D3 between AA and EA with definitive replication of inter-ethnic differences for uridine phosphorylase 1 (UPP1) and zinc finger-SWIM containing 4 (ZSWIM4). We performed expression quantitative trait loci (eQTL) mapping and identified response cis-eQTLs for ZSWIM4 as well as for histone deacetylase 3 (HDAC3), the latter of which showed a trend toward significant inter-ethnic differences in transcriptional response. Allele frequency differences of eQTLs for ZSWIM4 and HDAC3 accounted for observed transcriptional differences between populations. Taken together, our results demonstrate that transcriptional response to 1α,25(OH)2D3 differs between AA and EA independent of serum 25(OH)D levels. We provide evidence in support of a genetic regulatory mechanism underlying transcriptional differences between populations for ZSWIM4 and HDAC3. Further work is needed to elucidate how response eQTLs modify vitamin D response and whether genotype and/or transcriptional response correlate with chemopreventive effects. Relevant biomarkers, such as tissue-specific 1α,25(OH)2D3 transcriptional response, could identify individuals likely to benefit from vitamin D for CRC prevention as well as elucidate basic mechanisms underlying CRC disparities.


Subject(s)
Calcitriol/metabolism , Colon/metabolism , Gene Expression Regulation , Uridine Phosphorylase/biosynthesis , Black or African American , Alleles , Biopsy , Black People , Cohort Studies , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Genetic Variation , Humans , Male , Organ Culture Techniques , Quantitative Trait Loci , Transcription, Genetic , United States , Uridine Phosphorylase/metabolism , Vitamin D/metabolism , White People
15.
Oncotarget ; 8(12): 19592-19608, 2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28121625

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment. They may drive tumor progression, although the mechanisms involved are still poorly understood. Exosomes have emerged as important mediators of intercellular communication in cancer. They mediate horizontal transfer of microRNAs (miRs), mRNAs and proteins, thus affecting breast cancer progression. Differential expression profile analysis identified three miRs (miRs -21, -378e, and -143) increased in exosomes from CAFs as compared from normal fibroblasts. Immunofluorescence indicated that exosomes may be transferred from CAFs to breast cancer cells, releasing their cargo miRs. Breast cancer cells (BT549, MDA-MB-231, and T47D lines) exposed to CAF exosomes or transfected with those miRs exhibited a significant increased capacity to form mammospheres, increased stem cell and epithelial-mesenchymal transition (EMT) markers, and anchorage-independent cell growth. These effects were reverted by transfection with anti-miRs. Similarly to CAF exosomes, normal fibroblast exosomes transfected with miRs -21, -378e, and -143 promoted the stemness and EMT phenotype of breast cancer cells. Thus, we provided evidence for the first time of the role of CAF exosomes and their miRs in the induction of the stemness and EMT phenotype in different breast cancer cell lines. Indeed, CAFs strongly promote the development of an aggressive breast cancer cell phenotype.


Subject(s)
Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Exosomes/genetics , MicroRNAs/genetics , Tumor Microenvironment/genetics , Apoptosis , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cancer-Associated Fibroblasts , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Staging , Phenotype , Prognosis , Signal Transduction , Tumor Cells, Cultured
16.
BMC Genomics ; 18(1): 102, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28103797

ABSTRACT

BACKGROUND: We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. RESULTS: We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. CONCLUSIONS: We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations.


Subject(s)
Asian People/genetics , Ethnicity/genetics , Chromosomes, Human, Y/genetics , DNA/isolation & purification , DNA/metabolism , DNA, Mitochondrial/genetics , Gene Flow , Genotype , Humans , Leukocytes/metabolism , Likelihood Functions , Nepal , Principal Component Analysis
18.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27654912

ABSTRACT

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Genomics , Mutation Rate , Phylogeny , Racial Groups/genetics , Animals , Australia , Black People/genetics , Datasets as Topic , Genetics, Population , History, Ancient , Human Migration/history , Humans , Native Hawaiian or Other Pacific Islander/genetics , Neanderthals/genetics , New Guinea , Sequence Analysis, DNA , Species Specificity , Time Factors
19.
Mol Ther Nucleic Acids ; 5(9): e365, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27648925

ABSTRACT

Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers.

20.
J Control Release ; 238: 43-57, 2016 09 28.
Article in English | MEDLINE | ID: mdl-27448441

ABSTRACT

A minor population of glioblastoma stem-like cells (GSCs) has been implicated in the relapse and resistance of glioblastoma to therapeutic treatments. Based on knowledge of the involvement of multiple microRNAs in GSC propagation, we designed a combinational approach to target the GSC population with multiple miRNA-based therapeutics. As carriers for the targeted delivery we took advantage of two aptamers that bind to, and inhibit, the receptor tyrosine kinases, Axl and PDGFRß. We showed that the aptamer conjugates are transported through an in vitro blood-brain barrier (BBB) model. Furthermore, combining miR-137 and antimiR-10b synergizes with the receptor inhibitory function of aptamer carriers and prevents GSC expansion. Results highlighted the potential of combining multifunctional RNA-based therapeutics for selective targeting of GSCs and offer a proof of principle strategy to potentially fulfill the still unmet need for effective and safe treatment of glioma.


Subject(s)
Antagomirs/therapeutic use , Aptamers, Nucleotide/therapeutic use , Brain Neoplasms/therapy , Genetic Therapy/methods , Glioma/therapy , MicroRNAs/antagonists & inhibitors , MicroRNAs/therapeutic use , Neoplastic Stem Cells/pathology , Antagomirs/genetics , Aptamers, Nucleotide/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Gene Transfer Techniques , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/metabolism , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...