Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Oncol ; 18(1): 19, 2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36709315

ABSTRACT

BACKGROUND: The gene of the Epidermal growth factor receptor (EGFR) is one of the most frequently altered genes in glioblastoma (GBM), with deletions of exons 2-7 (EGFRvIII) being amongst the most common genomic mutations. EGFRvIII is heterogeneously expressed in GBM. We already showed that EGFRvIII expression has an impact on chemosensitivity, replication stress, and the DNA damage response. Wee1 kinase is a major regulator of the DNA damage induced G2 checkpoint. It is highly expressed in GBM and its overexpression is associated with poor prognosis. Since Wee1 inhibition can lead to radiosensitization of EGFRvIII-negative (EGFRvIII-) GBM cells, we asked, if Wee1 inhibition is sufficient to radiosensitize also EGFRvIII-positive (EGFRvIII+) GBM cells. METHODS: We used the clinically relevant Wee1 inhibitor adavosertib and two pairs of isogenetic GBM cell lines with and without endogenous EGFRvIII expression exhibiting different TP53 status. Moreover, human GBM samples displaying heterogenous EGFRvIII expression were analyzed. Expression of Wee1 was assessed by Western blot and respectively immunohistochemistry. The impact of Wee1 inhibition in combination with irradiation on cell cycle and cell survival was analyzed by flow cytometry and colony formation assay. RESULTS: Analysis of GBM cells and patient samples revealed a higher expression of Wee1 in EGFRvIII+ cells compared to their EGFRvIII- counterparts. Downregulation of EGFRvIII expression by siRNA resulted in a strong decrease in Wee1 expression. Wee1 inhibition efficiently abrogated radiation-induced G2-arrest and caused radiosensitization, without obvious differences between EGFRvIII- and EGFRvIII+ GBM cells. CONCLUSION: We conclude that the inhibition of Wee1 is an effective targeting approach for the radiosensitization of both EGFRvIII- and EGFRvIII+ GBM cells and may therefore represent a promising new therapeutic option to increase response to radiotherapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/radiotherapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Cycle , Cell Cycle Proteins/genetics , Cell Line, Tumor , Brain Neoplasms/radiotherapy , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/therapeutic use
2.
Neurooncol Adv ; 4(1): vdab180, 2022.
Article in English | MEDLINE | ID: mdl-35274102

ABSTRACT

Background: The oncogene epidermal growth factor receptor variant III (EGFRvIII) is expressed in approximately one-third of all glioblastomas (GBMs). So far it is not clear if EGFRvIII expression induces replication stress in GBM cells, which might serve as a therapeutical target. Methods: Isogenetic EGFRvIII- and EGFRvIII+ cell lines with endogenous EGFRvIII expression were used. Markers of oncogenic and replication stress such as γH2AX, RPA, 53BP1, ATR, and CHK1 were analyzed using western blot, immunofluorescence, and flow cytometry. The DNA fiber assay was performed to analyze replication, transcription was measured by incorporation of EU, and genomic instability was investigated by micronuclei and CGH-Array analysis. Immunohistochemistry staining was used to detect replication stress markers and R-loops in human GBM samples. Results: EGFRvIII+ cells exhibit an activated replication stress response, increased spontaneous DNA damage, elevated levels of single-stranded DNA, and reduced DNA replication velocity, which are all indicative characteristics of replication stress. Furthermore, we show here that EGFRvIII expression is linked to increased genomic instability. EGFRvIII-expressing cells display elevated RNA synthesis and R-loop formation, which could also be confirmed in EGFRvIII-positive GBM patient samples. Targeting replication stress by irinotecan resulted in increased sensitivity of EGFRvIII+ cells. Conclusion: This study demonstrates that EGFRvIII expression is associated with increased replication stress, R-loop accumulation, and genomic instability. This might contribute to intratumoral heterogeneity but may also be exploited for individualized therapy approaches.

3.
Cancers (Basel) ; 12(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003585

ABSTRACT

Chromosomal instability (CIN) is an emerging hallmark of cancer and its role in therapeutic responses has been increasingly attracting the attention of the research community. To target the vulnerability of tumors with high CIN, it is important to identify the genes and mechanisms involved in the maintenance of CIN. In our work, we recognize the tumor suppressor gene Phosphatase and Tensin homolog (PTEN) as a potential gene causing CIN in triple-negative breast cancer (TNBC) and show that TNBC with low expression levels of PTEN can be sensitized for the treatment with poly-(ADP-ribose)-polymerase 1 (PARP1) inhibitors, independent of Breast Cancer (BRCA) mutations or a BRCA-like phenotype. In silico analysis of mRNA expression data from 200 TNBC patients revealed low expression of PTEN in tumors with a high CIN70 score. Western blot analysis of TNBC cell lines confirm lower protein expression of PTEN compared to non TNBC cell lines. Further, PTEN-deficient cell lines showed cellular sensitivity towards PARP1 inhibition treatment. DNA fiber assays and examination of chromatin bound protein fractions indicate a protective role of PTEN at stalled replication forks. In this study, we recognize PTEN as a potential CIN-causing gene in TNBC and identify its important role in the replication processes.

4.
Cells ; 9(1)2020 01 17.
Article in English | MEDLINE | ID: mdl-31963582

ABSTRACT

Chromosomal instability not only has a negative effect on survival in triple-negative breast cancer, but also on the well treatable subgroup of luminal A tumors. This suggests a general mechanism independent of subtypes. Increased chromosomal instability (CIN) in triple-negative breast cancer (TNBC) is attributed to a defect in the DNA repair pathway homologous recombination. Homologous recombination (HR) prevents genomic instability by repair and protection of replication. It is unclear whether genetic alterations actually lead to a repair defect or whether superior signaling pathways are of greater importance. Previous studies focused exclusively on the repair function of HR. Here, we show that the regulation of HR by the intra-S-phase damage response at the replication is of overriding importance. A damage response activated by Ataxia telangiectasia and Rad3 related-checkpoint kinase 1 (ATR-CHK1) can prevent replication stress and leads to resistance formation. CHK1 thus has a preferred role over HR in preventing replication stress in TNBC. The signaling cascade ATR-CHK1 can compensate for a double-strand break repair error and lead to resistance of HR-deficient tumors. Established methods for the identification of HR-deficient tumors for Poly(ADP-Ribose)-Polymerase 1 (PARP1) inhibitor therapies should be extended to include analysis of candidates for intra-S phase damage response.


Subject(s)
Checkpoint Kinase 1/metabolism , Drug Resistance, Neoplasm/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , Recombinational DNA Repair/genetics , Triple Negative Breast Neoplasms/metabolism , Alkylating Agents/pharmacology , Antibiotics, Antineoplastic/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/genetics , DNA Damage/drug effects , DNA Damage/genetics , Databases, Genetic , Female , Genomic Instability/drug effects , Homologous Recombination/drug effects , Humans , Microscopy, Electron, Transmission , Mitomycin/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Recombinational DNA Repair/drug effects , Signal Transduction/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology
5.
Oncotarget ; 7(29): 45122-45133, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27281611

ABSTRACT

The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/pathology , ErbB Receptors/antagonists & inhibitors , Head and Neck Neoplasms/pathology , Radiation Tolerance/drug effects , Carcinoma, Squamous Cell/genetics , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cetuximab/pharmacology , Erlotinib Hydrochloride/pharmacology , Head and Neck Neoplasms/genetics , Humans , Squamous Cell Carcinoma of Head and Neck , Tumor Suppressor Protein p53/genetics
6.
Radiother Oncol ; 116(3): 423-30, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26422459

ABSTRACT

BACKGROUND: EGFR inhibition blocks DNA double strand break (DSB) repair but the detailed mechanisms are still unclear. We asked whether EGFR inhibition blocks DSB repair by reducing the X-ray-induced phosphorylation of repair proteins using a phosphoproteomic approach. MATERIALS AND METHODS: Using UT-SCC5 and SAS head and neck cancer cells we established a differential phosphoproteomic approach for quantitative analysis of DNA repair proteins by stable isotope labeling with amino acids. Nuclear phosphoproteins were isolated and analyzed by liquid chromatography/tandem mass spectrometry. Erlotinib, PD98059 and olaparib were used to inhibit EGFR, MEK1/2 and PARP1, respectively. PARP1 was knocked down by siRNA. DSB repair was measured by quantifying residual 53BP1 foci. RESULTS: Over 150 nuclear phosphoproteins were quantified after irradiation, including 24 DNA repair proteins. Two of these, including PARP1, were consistently reduced in both cell lines upon erlotinib treatment. PARP1 inhibition or knock-down and EGFR inhibition resulted in an analog number of residual foci which was not further increased by combination of both strategies. MEK1/2 inhibition with or without blockage of EGFR or PARP1 caused similar effects. CONCLUSION: We have established a powerful, quantitative phosphoproteomic approach to investigate regulatory mechanisms in DSB repair, dependent on protein phosphorylation after irradiation. Using this approach we have identified PARP1 as a mediator of EGFR/MEK-dependent regulation of DSB repair.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , ErbB Receptors/physiology , Poly(ADP-ribose) Polymerases/physiology , Proteomics , Carcinoma, Squamous Cell/genetics , DNA/genetics , DNA-Binding Proteins/genetics , Enzyme Inhibitors/pharmacology , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/pharmacology , Flavonoids/pharmacology , Head and Neck Neoplasms/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Phosphorylation/radiation effects , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1 , RNA Interference , RNA, Small Interfering/pharmacology , Squamous Cell Carcinoma of Head and Neck , Tumor Cells, Cultured , Tumor Suppressor p53-Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...