Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Biomed Opt ; 19(2): 027003, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24522808

ABSTRACT

Articular cartilage (AC) is mainly composed of collagen, proteoglycans, chondrocytes, and water. These constituents are inhomogeneously distributed to provide unique biomechanical properties to the tissue. Characterization of the spatial distribution of these components in AC is important for understanding the function of the tissue and progress of osteoarthritis. Fourier transform infrared (FT-IR) absorption spectra exhibit detailed information about the biochemical composition of AC. However, highly specific FT-IR analysis for collagen and proteoglycans is challenging. In this study, a chemometric approach to predict the biochemical composition of AC from the FT-IR spectra was investigated. Partial least squares (PLS) regression was used to predict the proteoglycan content (n=32) and collagen content (n=28) of bovine cartilage samples from their average FT-IR spectra. The optimal variables for the PLS regression models were selected by using backward interval partial least squares and genetic algorithm. The linear correlation coefficients between the biochemical reference and predicted values of proteoglycan and collagen contents were r=0.923 (p<0.001) and r=0.896 (p<0.001), respectively. The results of the study show that variable selection algorithms can significantly improve the PLS regression models when the biochemical composition of AC is predicted.


Subject(s)
Cartilage, Articular/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Algorithms , Amides/analysis , Animals , Cattle , Collagen/chemistry , Hydroxyproline/analysis , Least-Squares Analysis , Patella/chemistry , Proteoglycans/analysis , Sulfates/analysis
2.
J Biomed Opt ; 18(9): 097006, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24064950

ABSTRACT

Fourier transform infrared (FTIR) microspectroscopy has been used to estimate the spatial proteoglycan (PG) and collagen contents in articular cartilage (AC). However, it is not clear whether the results of FTIR analyses are consistent between different species. Our aim was to clarify how three different FTIR PG parameters in use, i.e., the integrated absorbance in the carbohydrate region, the carbohydrate/amide I ratio, and the second derivative peak at 1062 cm-1, can indicate the densitometrically assessed (reference method) spatial PG content in a sample set consisting of osteoarthritic human and bovine AC samples. The results show that all the parameters can accurately reflect the PG content, when the species are analyzed separately. When all samples are pooled, the correlation with the reference method is high (r=0.760, n=104) for the second derivative peak at 1062 cm-1 and is significantly lower (p<0.05) for the carbohydrate region (r=0.587, n=104) and for the carbohydrate/amide I ratio (r=0.579, n=104). Therefore, the analysis of the carbohydrate region may provide inconsistent results, if the cartilage samples from different species are in use. Based on the present study, second derivative analysis yields more consistent results for human and bovine cartilages.


Subject(s)
Cartilage, Articular/chemistry , Proteoglycans/analysis , Spectrophotometry, Infrared/methods , Adult , Aged , Animals , Cattle , Humans , Middle Aged , Osteoarthritis/pathology , Proteoglycans/chemistry , Regression Analysis
3.
PLoS One ; 7(2): e32344, 2012.
Article in English | MEDLINE | ID: mdl-22359683

ABSTRACT

Fourier Transform Infrared (FT-IR) spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG) contents of articular cartilage (AC). However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR) and principal component regression (PCR) methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization) or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.


Subject(s)
Cartilage, Articular/chemistry , Multivariate Analysis , Proteoglycans/analysis , Regression Analysis , Spectroscopy, Fourier Transform Infrared/methods , Diagnostic Imaging/methods , Diagnostic Imaging/standards , Humans
4.
J Anat ; 217(3): 262-74, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20646109

ABSTRACT

Articular cartilage composition and structure are maintained and remodeled by chondrocytes under the influence of loading. Exercise-induced changes in the composition, structure, mechanical properties and tissue integrity of growing and aging hamster articular cartilage were investigated. Articular cartilage samples (n = 191) were harvested from the proximal tibiae of hamsters aged 1, 3, 6, 12 and 15 months. The hamsters were divided into runners and controls. The runners had free access to a running wheel between 1 and 3 months (runner groups 3-, 12- and 15-month-old hamsters) or 1 and 6 months (runner group 6-month-old hamsters) of age. Control animals were subjected to a sedentary lifestyle. Mechanical indentation tests and depth-wise compositional and structural analyses were performed for the cartilage samples. Furthermore, the integrity of articular cartilage was assessed using histological osteoarthritis grading. Exercise affected the collagen network organization after a 5-month exercise period, especially in the middle and deep zones. However, no effect on the mechanical properties was detected after exercise. Before the age of 12 months, the runners showed less osteoarthritis than the controls, whereas at 15 months of age the situation was reversed. It is concluded that, in hamsters, physical exercise at a young age enhances cartilage maturation and alters the depth-wise cartilage structure and composition. This may be considered beneficial. However, exercise at a young age demonstrated adverse effects on cartilage at a later age with a significant increase in the incidence of osteoarthritis.


Subject(s)
Arthritis, Experimental/prevention & control , Cartilage, Articular/physiology , Motor Activity/physiology , Osteoarthritis/prevention & control , Aging/physiology , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/physiopathology , Biomechanical Phenomena , Cartilage, Articular/anatomy & histology , Cartilage, Articular/growth & development , Cartilage, Articular/metabolism , Collagen/metabolism , Cricetinae , Female , Mesocricetus , Osteoarthritis/etiology , Osteoarthritis/physiopathology , Proteoglycans/metabolism , Weight Gain/physiology
5.
J Bone Miner Res ; 25(6): 1360-6, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20200925

ABSTRACT

Renal osteodystrophy alters metabolic activity and remodeling rate of bone and also may lead to different bone composition. The objective of this study was to characterize the composition of bone in high-turnover renal osteodystrophy patients by means of Fourier transform infrared spectroscopic imaging (FTIRI). Iliac crest biopsies from healthy bone (n = 11) and patients with renal osteodystrophy (ROD, n = 11) were used in this study. The ROD samples were from patients with hyperparathyroid disease. By using FTIRI, phosphate-to-amide I ratio (mineral-to-matrix ratio), carbonate-to-phosphate ratio, and carbonate-to-amide I ratio (turnover rate/remodeling activity), as well as the collagen cross-link ratio (collagen maturity), were quantified. Histomorphometric analyses were conducted for comparison. The ROD samples showed significantly lower carbonate-to-phosphate (p < .01) and carbonate-to-amide I (p < .001) ratios. The spatial variation across the trabeculae highlighted a significantly lower degree of mineralization (p < .05) at the edges of the trabeculae in the ROD samples than in normal bone. Statistically significant linear correlations were found between histomorphometric parameters related to bone-remodeling activity and number of bone cells and FTIRI-calculated parameters based on carbonate-to-phosphate and carbonate-to-amide I ratios. Hence the results suggested that FTIRI parameters related to carbonate may be indicative of turnover and remodeling rate of bone.


Subject(s)
Bone Remodeling/physiology , Chronic Kidney Disease-Mineral and Bone Disorder/physiopathology , Adult , Biopsy , Bone and Bones/pathology , Bone and Bones/physiopathology , Chronic Kidney Disease-Mineral and Bone Disorder/pathology , Humans , Male , Spectroscopy, Fourier Transform Infrared
6.
J Biomech ; 41(9): 1978-86, 2008.
Article in English | MEDLINE | ID: mdl-18490021

ABSTRACT

Mechanical properties of articular cartilage are controlled by tissue composition and structure. Cartilage function is sensitively altered during tissue degeneration, in osteoarthritis (OA). However, mechanical properties of the tissue cannot be determined non-invasively. In the present study, we evaluate the feasibility to predict, without mechanical testing, the stress-relaxation response of human articular cartilage under unconfined compression. This is carried out by combining microscopic and biochemical analyses with composition-based mathematical modeling. Cartilage samples from five cadaver patellae were mechanically tested under unconfined compression. Depth-dependent collagen content and fibril orientation, as well as proteoglycan and water content were derived by combining Fourier transform infrared imaging, biochemical analyses and polarized light microscopy. Finite element models were constructed for each sample in unconfined compression geometry. First, composition-based fibril-reinforced poroviscoelastic swelling models, including composition and structure obtained from microscopical and biochemical analyses were fitted to experimental stress-relaxation responses of three samples. Subsequently, optimized values of model constants, as well as compositional and structural parameters were implemented in the models of two additional samples to validate the optimization. Theoretical stress-relaxation curves agreed with the experimental tests (R=0.95-0.99). Using the optimized values of mechanical parameters, as well as composition and structure of additional samples, we were able to predict their mechanical behavior in unconfined compression, without mechanical testing (R=0.98). Our results suggest that specific information on tissue composition and structure might enable assessment of cartilage mechanics without mechanical testing.


Subject(s)
Cartilage, Articular/physiology , Fractures, Compression/pathology , Fractures, Compression/physiopathology , Computer Simulation , Humans , Models, Biological , Sensitivity and Specificity , Stress, Mechanical
7.
Magn Reson Imaging ; 26(5): 602-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18158223

ABSTRACT

The depth-wise variation of T(2) relaxation time is known to reflect the collagen network architecture in cartilage, while the delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique is sensitive to tissue proteoglycan (PG) concentration. As the cartilage PG content varies along the tissue depth, the depth-dependent accumulation of the contrast agent may affect the inherent T(2) of cartilage in a nonconstant manner. Therefore, T(2) and dGEMRIC are typically measured in separate MRI sessions. In the present in vitro MRI study at 9.4 T, depth-wise T(2) profiles and collagenous zone thicknesses as determined from T(2) maps in the absence and presence of Gd-DTPA(2-) (T(2) and T(2Gd), respectively) were compared in samples of intact human articular cartilage (n=65). These T(2) measures were further correlated with birefringence (BF) of polarized light microscopy (PLM) to quantify the ability of MRI to predict the properties of the collagen fibril network. The reproducibility of the T(2) measurement in the current setup was also studied. Typical tri-laminar collagen network architecture was observed both with and without Gd-DTPA(2-). The inverse of BF (1/BF) correlated significantly with both T(2) and T(2Gd) (r=0.91, slope=0.56 and r=0.90, slope=0.63), respectively. The statistically significant linear correlations between zone thicknesses as determined from T(2) and T(2Gd) were r=0.55 (slope=0.49), r=0.74 (slope=0.71) and r=0.95 (slope=0.94) for superficial, middle and deep tissue zones, respectively. Reproducibility of the T(2) measurement was worst for superficial cartilage. Consistent with PLM, T(2) and T(2Gd) measurements reveal highly similar depth-dependent information on collagen network in intact human cartilage. Thus, dGEMRIC and T(2) measurements in one MRI session are feasible for intact articular cartilage in vitro.


Subject(s)
Cartilage, Articular/anatomy & histology , Magnetic Resonance Imaging/methods , Adult , Aged , Aged, 80 and over , Cadaver , Contrast Media/administration & dosage , Gadolinium DTPA/administration & dosage , Humans , In Vitro Techniques , Middle Aged , Statistics, Nonparametric
8.
Microsc Res Tech ; 71(4): 279-87, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18072283

ABSTRACT

Polarized light microscopy is a traditional method for visualizing the collagen network architecture of articular cartilage. Articular cartilage repair and tissue engineering studies have raised new demands for techniques capable of quantitative characterization of the scar and repair tissues, including properties of the collagen network. Modern polarized light microscopy can be used to measure collagen fibril orientation, parallelism, and birefringence. New commercial instruments are computer controlled and the measurements are easy to perform. However, often the interpretation of results causes difficulties, even errors, because the theoretical aspects of the technique are demanding. The aim of this study was to describe the instrumentation and properties of a modern polarized light microscope, to point out some sources of error in the interpretation of the results, and to recall the theoretical background of the polarized light microscopy.


Subject(s)
Cartilage, Articular/ultrastructure , Collagen/ultrastructure , Microscopy, Polarization , Animals , Birefringence , Cattle , Fibril-Associated Collagens/ultrastructure , Microscopy, Polarization/instrumentation , Microscopy, Polarization/methods
9.
Connect Tissue Res ; 48(1): 27-33, 2007.
Article in English | MEDLINE | ID: mdl-17364664

ABSTRACT

Chondroitin sulfate is the major constituent of cartilage. Inadequate sulfate availability results in the production of undersulfated proteoglycans. In osteoarthritis, there is a net loss of articular cartilage proteoglycans. Theoretically, it is possible that during the progress of disease undersulfated glycosaminoglycans are synthesized producing proteoglycans with poorer biological properties. In this study, we tested whether in early human osteoarthritic articular cartilage (Mankin's score of 2 and 3) or more advanced disease (Mankin's score over 3), there are proteoglycans that contain a higher relative amount of nonsulfated chondroitin disaccharide isomer in their chondroitin sulfate chains by analyzing the molar ratios of chondroitin sulfate disaccharide isoforms with fluorophore-assisted carbohydrate electrophoresis. Our results indicated that the nonsulfated disaccharide of chondroitin sulfate formed in average only 1-2% of the total chondroitin sulfate. More important, the molar ratio of nonsulfated disaccharide did not appear to be increased in the osteoarthritic articular cartilage. We conclude that undersulfation of articular cartilage proteoglycans is not present in the human osteoarthritic joint.


Subject(s)
Cartilage, Articular/metabolism , Chondroitin Sulfates/metabolism , Osteoarthritis, Knee/metabolism , Proteoglycans/metabolism , Adult , Aged , Disaccharides/analysis , Humans , Middle Aged , Proteoglycans/chemistry , Sulfuric Acid Esters/analysis
10.
J Orthop Res ; 24(4): 690-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16514661

ABSTRACT

The equilibrium Young's modulus of articular cartilage is known to be primarily determined by proteoglycans (PGs). However, the relation between the Poisson's ratio and the composition and structure of articular cartilage is more unclear. In this study, we determined Young's modulus and Poisson's ratio of bovine articular cartilage in unconfined compression. Subsequently, the same samples, taken from bovine knee (femoral, patellar and tibial cartilage) and shoulder (humeral cartilage) joints, were processed for quantitative microscopic analysis of PGs, collagen content, and collagen architecture. The Young's modulus, Poisson's ratio, PG content (estimated with optical density measurements), collagen content, and birefringence showed significant topographical variation (p < 0.05) among the test sites. Experimentally the Young's modulus was strongly determined by the tissue PG content (r = 0.86, p < 0.05). Poisson's ratio revealed a significant negative linear correlation (r = -0.59, p < 0.05) with the collagen content, as assessed by the Fourier transform infrared imaging. Finite element analyses, conducted using a fibril reinforced biphasic model, indicated that the mechanical properties of the collagen network strongly affected the Poisson's ratio. We conclude that Poisson's ratio of articular cartilage is primarily controlled by the content and organization of the collagen network.


Subject(s)
Cartilage, Articular/physiology , Collagen/analysis , Animals , Biomechanical Phenomena , Cattle , Compressive Strength , Elasticity , Humerus/physiology , Knee Joint/physiology , Proteoglycans/analysis , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical
11.
Biomech Model Mechanobiol ; 5(2-3): 150-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16506019

ABSTRACT

The extracellular matrix of articular cartilage modulates the mechanical signals sensed by the chondrocytes. In the present study, a finite element model (FEM) of the chondrocyte and its microenvironment was reconstructed using the information from fourier transform infrared imaging spectroscopy. This environment consisted of pericellular, territorial (mainly proteoglycans), and inter-territorial (mainly collagen) matrices. The chondrocyte, pericellular, and territorial matrix were assumed to be mechanically isotropic and poroelastic, whereas the inter-territorial matrix, due to its high collagen content, was assumed to be transversely isotropic and poroelastic. Under instantaneous strain-controlled compression, the FEM indicated that the fluid pressure within the chondrocyte increased nonlinearly as a function of the in-plane Young's modulus of the collagen network. Under instantaneous force-controlled compression, the chondrocyte experienced the highest fluid pressure when the in-plane Young's modulus of the collagen network was approximately 4 MPa. Based on the present results, the mechanical characteristics of the collagen network of articular cartilage can modify fluid flow and stresses in chondrocytes. Therefore, the integrity of the collagen network may be an important determinant in cell stimulation and in the control of the matrix maintenance.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/physiology , Chondrocytes/physiology , Collagen/metabolism , Extracellular Matrix/metabolism , Biophysical Phenomena , Biophysics , Cartilage, Articular/metabolism , Humans , Rheology , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical
12.
Phys Med Biol ; 50(14): 3221-33, 2005 Jul 21.
Article in English | MEDLINE | ID: mdl-16177505

ABSTRACT

Previous quantitative 2D-ultrasound imaging studies have demonstrated that the ultrasound reflection measurement of articular cartilage surface sensitively detects degradation of the collagen network, whereas digestion of cartilage proteoglycans has no significant effect on the ultrasound reflection. In this study, the first aim was to characterize the ability of quantitative 2D-ultrasound imaging to detect site-specific differences in ultrasound reflection and backscattering properties of cartilage surface and cartilage-bone interface at visually healthy bovine knee (n = 30). As a second aim, we studied factors controlling ultrasound reflection properties of an intact cartilage surface. The ultrasound reflection coefficient was determined in time (R) and frequency domains (IRC) at medial femoral condyle, lateral patello-femoral groove, medial tibial plateau and patella using a 20 MHz ultrasound imaging instrument. Furthermore, cartilage surface roughness was quantified by calculating the ultrasound roughness index (URI). The superficial collagen content of the cartilage was determined using a FT-IRIS-technique. A significant site-dependent variation was shown in cartilage thickness, ultrasound reflection parameters, URI and superficial collagen content. As compared to R and IRC, URI was a more sensitive parameter in detecting differences between the measurement sites. Ultrasound reflection parameters were not significantly related to superficial collagen content, whereas the correlation between R and URI was high. Ultrasound reflection at the cartilage-bone interface showed insignificant site-dependent variation. The current results suggest that ultrasound reflection from the intact cartilage surface is mainly dependent on the cartilage surface roughness and the collagen content has a less significant role.


Subject(s)
Cartilage, Articular/diagnostic imaging , Collagen/ultrastructure , Joints/diagnostic imaging , Animals , Cattle , Hindlimb , Microscopy, Electron, Scanning , Ultrasonography
13.
J Rheumatol ; 31(12): 2449-53, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15570650

ABSTRACT

OBJECTIVE: To test whether there is undersulfation of chondroitin sulfate in osteoarthritic bovine articular cartilage to support the hypothesis that sulfate deficiency is involved with the development of osteoarthritis. METHODS: Cartilage samples from bovine patellae (n = 32) were divided into 3 groups based on their osteoarthritic progression, as assessed by modified Mankin score. Uronic acid contents of the samples were determined. Fragmentation of the proteoglycans due to proteolytic processing was estimated with agarose gel electrophoresis. The molar ratios of chondroitin sulfate isoforms in the extracted proteoglycans were determined with fluorophore-assisted carbohydrate electrophoresis. RESULTS: Loss of proteoglycans and accumulation of tissue water was evident in groups II and III, and progressive OA increased heterogeneity of aggrecan population in groups II and III. Importantly, the molar ratio of nonsulfated disaccharide was decreased in the osteoarthritic articular cartilage. CONCLUSION: The structure of chondroitin sulfate in degenerated bovine cartilage did not support the hypothesis that sulfate depletion is present in osteoarthritic joint.


Subject(s)
Cartilage, Articular/pathology , Cartilage, Articular/ultrastructure , Chondroitin Sulfates/metabolism , Glycosaminoglycans/metabolism , Patella , Animals , Biomarkers/analysis , Cattle , Chondroitin Sulfates/analysis , Disease Models, Animal , Disease Progression , Electrophoresis, Agar Gel , Glycosaminoglycans/analysis , Reference Values , Sensitivity and Specificity , Tissue Culture Techniques
14.
J Invest Dermatol ; 123(4): 708-14, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15373776

ABSTRACT

Since excessive epidermal hyaluronan is associated with hyperproliferative states and disturbed terminal differentiation of the keratinocytes, we hypothesized that 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan synthesis, could counteract these phenotypic features. Cultured epidermal keratinocytes showed a concentration dependent, maximum 83% reduction of hyaluronan in the presence of 0.2-1.0 mM 4-MU, whereas less decline was seen in the synthesis of chondroitin and heparan sulfate. The reduced hyaluronan was associated with no apparent change in its molecular mass. The 4-MU-treated keratinocytes showed an accentuated epithelial morphology with a flat, round cell shape, increased stress fibers and large vinculin-positive adhesion plaques, cytoskeletal changes consistent with the markedly reduced migration rate observed in scratched monolayer cultures. High concentrations of 4-MU also caused a block in keratinocyte proliferation, reversible upon 4-MU withdrawal. In the epidermis of organotypic cultures, 4-MU prevented the hyaluronan accumulation and epidermal hypertrophy induced by epidermal growth factor. The present results concur with earlier data indicating that enhanced cell locomotion and proliferation are associated with hyaluronan synthesis in activated keratinocytes. Cell proliferation, however, was blocked more strongly than expected on the basis of the incomplete hyaluronan synthesis inhibition, and may represent a novel target of 4-MU. At any rate, 4-MU and equivalent hyaluronan synthesis inhibitors might be considered for situations where suppression of epidermal activation and hyperproliferation is warranted.


Subject(s)
Hyaluronic Acid/metabolism , Hymecromone/pharmacology , Keratinocytes/cytology , Keratinocytes/drug effects , Animals , Cell Division/drug effects , Cell Line , Cell Movement/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Epidermal Cells , Epidermal Growth Factor/pharmacology , Hymecromone/analogs & derivatives , Keratinocytes/metabolism , Organ Culture Techniques , Rats
15.
Biorheology ; 41(3-4): 167-79, 2004.
Article in English | MEDLINE | ID: mdl-15299250

ABSTRACT

The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.


Subject(s)
Cartilage, Articular/physiology , Animals , Cartilage, Articular/diagnostic imaging , Cattle , Compressive Strength , Elasticity , Finite Element Analysis , Humans , Microscopy, Polarization , Rheology/methods , Ultrasonics , Ultrasonography
16.
Appl Spectrosc ; 58(1): 137-40, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14727731

ABSTRACT

Fourier transform infrared imaging (FT-IRI) is a novel technique for characterization of the biochemical composition of biological tissues, e.g., articular cartilage. The use of cryosections is preferred in FT-IRI. Unfortunately, significant variation in section thickness often impairs the suitability of cryosections for quantitative FT-IRI analysis. The present study introduces an inexpensive reference sample method for quantitative analysis. In this technique, specimen absorption is normalized with that of nitrocellulose membrane embedded and cryosectioned with the sample. Mean variation of the infrared absorption in cartilage specimens was 11.5%, 12.1%, and 20.6% for 5 microm, 10 microm, and 14 microm thick sections, respectively, without normalization. Normalization reduced the variation to 5.2%, 4.0%, and 4.6% for the same sections, respectively. The normalization method enables usage of cryosections for quantitative work and significantly reduces the cost and time needed for FT-IRI analysis.


Subject(s)
Cartilage, Articular/chemistry , Cartilage, Articular/cytology , Cryoultramicrotomy/methods , Cryoultramicrotomy/standards , Specimen Handling/methods , Specimen Handling/standards , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Fourier Transform Infrared/standards , Animals , Artifacts , Cattle , Culture Techniques/methods , Finland , Quality Control , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
17.
Cells Tissues Organs ; 175(3): 121-32, 2003.
Article in English | MEDLINE | ID: mdl-14663155

ABSTRACT

The present study is aimed at revealing structure-function relationships of bovine patellar articular cartilage. Collagenase, chondroitinase ABC and elastase were used for controlled and selective enzymatic modifications of cartilage structure, composition and functional properties. The effects of the enzymatic degradations were quantitatively evaluated using quantitative polarized light microscopy, digital densitometry of safranin O-stained sections as well as with biochemical and biomechanical techniques. The parameters related to tissue composition and structure were correlated with the indentation stiffness of cartilage. In general, tissue alterations after enzymatic digestions were restricted to the superficial cartilage. All enzymatic degradations induced superficial proteoglycan (PG) depletion. Collagenase also induced detectable superficial collagen damage, though without causing cartilage fibrillation or tissue swelling. Quantitative microscopic techniques were more sensitive than biochemical methods in detecting these changes. The Young's modulus of cartilage decreased after enzymatic treatments indicating significant softening of the tissue. The PG concentration of the superficial zone proved to be the major determinant of the Young's modulus (r(2) = 0.767, n = 72, p < 0.001). Results of the present study indicate that specific enzymatic degradations of the tissue PGs and collagen can provide reproducible experimental models to clarify the structure-function relationships of cartilage. Effects of these models mimic the changes observed in early osteoarthrosis. Biomechanical testing and quantitative microscopic techniques proved to be powerful tools for detecting the superficial structural and compositional changes while the biochemical measurements on the whole uncalcified cartilage were less sensitive.


Subject(s)
Cartilage, Articular/physiology , Animals , Biomechanical Phenomena , Cartilage, Articular/metabolism , Cattle , Chondroitin ABC Lyase , Collagenases , Male , Microscopy, Polarization , Pancreatic Elastase , Patella , Proteoglycans/metabolism , Sensitivity and Specificity , Structure-Activity Relationship
18.
J Biomech ; 36(9): 1259-67, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12893034

ABSTRACT

We have earlier developed a handheld ultrasound indentation instrument for the diagnosis of articular cartilage degeneration. In ultrasound indentation, cartilage is compressed with the ultrasound transducer. Tissue thickness and deformation are calculated from the A-mode ultrasound signal and the stress applied is registered with the strain gauges. In this study, the applicability of the ultrasound indentation instrument to quantify site-dependent variation in the mechano-acoustic properties of bovine knee cartilage was investigated. Osteochondral blocks (n=6 per site) were prepared from the femoral medial condyle (FMC), the lateral facet of the patello-femoral groove (LPG) and the medial tibial plateau (MTP). Cartilage stiffness (dynamic modulus, E(dyn)), as obtained with the ultrasound indentation instrument in situ, correlated highly linearly (r=0.913, p<0.01) with the values obtained using the reference material-testing device in vitro. Reproducibility (standardized coefficient of variation) of the ultrasound indentation measurements was 5.2%, 1.7% and 3.1% for E(dyn), ultrasound reflection coefficient of articular surface (R) and thickness, respectively. E(dyn) and R were site dependent (p<0.05, Kruskall-Wallis H test). E(dyn) was significantly higher (p<0.05, Kruskall-Wallis Post Hoc test) in LPG (mean+/-SD: 10.1+/-3.1MPa) than in MTP (2.9+/-1.4MPa). In FMC, E(dyn) was 4.6+/-1.3MPa. R was significantly (p<0.05) lower at MTP (2.0+/-0.7%) than at other sites (FMC: 4.2+/-0.9%; LPG: 4.4+/-0.8%). Cartilage glycosaminoglycan concentration, as quantified with the digital densitometry, correlated positively with E(dyn) (r=0.678, p<0.01) and especially with the equilibrium Young's modulus (reference device, r=0.874, p<0.01) but it was not associated with R (r=0.294, p=0.24). We conclude that manual measurements are reproducible and the instrument may be used for detection of cartilage quality in situ. Especially, combined measurement of thickness, E(dyn) and R provides valuable diagnostic information on cartilage status.


Subject(s)
Cartilage, Articular/diagnostic imaging , Knee Joint/diagnostic imaging , Animals , Cartilage, Articular/metabolism , Cattle , Densitometry , Elasticity , Equipment Design , Feasibility Studies , Glycosaminoglycans/metabolism , Knee Joint/metabolism , Reproducibility of Results , Ultrasonography/instrumentation
19.
Ultrasound Med Biol ; 29(3): 447-54, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12706196

ABSTRACT

The unknown and variable speed of sound may impair accuracy of the acoustic measurement of cartilage properties. In this study, relationships between the speed of sound and cartilage composition, mechanical properties and degenerative state were studied in bovine knee and ankle cartilage (n = 62). Further, the effect of speed variation on the determination of cartilage thickness and stiffness with ultrasound (US) indentation was numerically simulated. The speed of sound was significantly (n = 32, p < 0.05) dependent on the cartilage water content (r = -0.800), uronic acid content (per wet weight, r = 0.886) and hydroxyproline content (per wet weight, r = 0.887, n = 28), Young's modulus at equilibrium (r = 0.740), dynamic modulus (r = 0.905), and degenerative state (i.e., Mankin score) (r = -0.727). In addition to cartilage composition, mechanical and acoustic properties varied significantly between different anatomical locations. In US indentation, cartilage is indented with a US transducer. Deformation and thickness of tissue are calculated using a predefined speed of sound and used in determination of dynamic modulus. Based on the simulations, use of the mean speed of sound of 1627 m/s (whole material) induced a maximum error of 7.8% on cartilage thickness and of 6.2% on cartilage dynamic modulus, as determined with the US indentation technique (indenter diameter 3 mm). We believe that these errors are acceptable in clinical US indentation measurements.


Subject(s)
Cartilage, Articular/physiopathology , Osteoarthritis/physiopathology , Sound , Animals , Biomechanical Phenomena , Cartilage, Articular/pathology , Cartilage, Articular/physiology , Cattle , Elasticity , Hydroxyproline/analysis , Osteoarthritis/metabolism , Osteoarthritis/pathology , Uronic Acids/analysis , Water/analysis
20.
Magn Reson Med ; 48(4): 640-8, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12353281

ABSTRACT

In Gd-DTPA-enhanced T(1) imaging of articular cartilage, the MRI contrast agent with two negative charges is understood to accumulate in tissue inversely to the negative charge of cartilage glycosaminoglycans (GAGs) of proteoglycans (PGs), and this leads to a decrease in the T(1) relaxation time of tissue relative to the charge in tissue. By assuming a constant relaxivity for Gd-DTPA in cartilage, it has further been hypothesized that the contrast agent concentration in tissue could be estimated from consecutive T(1) measurements in the absence or presence of the contrast agent. The spatial sensitivity of the technique was examined at 9.4 T in normal and PG-depleted bovine patellar cartilage samples. As a reference, spatial PG concentration was assessed with digital densitometry from safranin O-stained cartilage sections. An excellent linear correlation between spatial optical density (OD) of stained GAGs and T(1) with Gd-DTPA was observed in the control and chondroitinase ABC-treated cartilage specimens, and the MR parameter accounted for approximately 80% of the variations in GAG concentration within samples. Further, the MR-resolved Gd-DTPA concentration proved to be an even better estimate for PGs, with an improved correlation. However, the linear relation between MR parameters and PG concentration did not apply in the deep tissue, where MR measurements overestimated the PG content. While the absolute [Gd-DTPA] determination may be prone to error due to uncertainty of relaxivity in cartilage, or to other contributing factors such as variations in tissue permeability, the experimental evidence highlights the sensitivity of this technique to reflect spatial changes in cartilage PG concentration in normal and degenerated tissue.


Subject(s)
Cartilage, Articular/chemistry , Contrast Media , Gadolinium DTPA , Magnetic Resonance Imaging , Proteoglycans/analysis , Animals , Cattle , Coloring Agents , Glycosaminoglycans/analysis , In Vitro Techniques , Male , Phenazines
SELECTION OF CITATIONS
SEARCH DETAIL
...