Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Electrophysiol ; 35(2): 258-266, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38065834

ABSTRACT

BACKGROUND: Incomplete atrial lesions resulting in pulmonary vein-left atrium reconnection after pulmonary vein antrum isolation (PVAI), are related to atrial fibrillation (AF) recurrence. Unfortunately, during the PVAI procedure, fluoroscopy and electroanatomic mapping cannot accurately determine the location and size of the ablation lesions in the atrial wall and this can result in incomplete PVAI lesions (PVAI-L) after radiofrequency catheter ablation (RFCA). AIM: We seek to evaluate whether cardiac magnetic resonance (CMR), immediately after RFCA of AF, can identify PVAI-L by characterizing the left atrial tissue. METHODS: Ten patients (63.1 ± 5.7 years old, 80% male) receiving a RFCA for paroxysmal AF underwent a CMR before (<1 week) and after (<1 h) the PVAI. Two-dimensional dark-blood T2-weighted short tau inversion recovery (DB-STIR), Three-dimensional inversion-recovery prepared long inversion time (3D-TWILITE) and three-dimensional late gadolinium enhancement (3D-LGE) images were performed to visualize PVAI-L. RESULTS: The PVAI-L was visible in 10 patients (100%) using 3D-TWILITE and 3D-LGE. Conversely, On DB-STIR, the ablation core of the PAVI-L could not be identified because of a diffuse high signal of the atrial wall post-PVAI. Microvascular obstruction was identified in 7 (70%) patients using 3D-LGE. CONCLUSION: CMR can visualize PVAI-L immediately after the RFCA of AF even without the use of contrast agents. Future studies are needed to understand if the use of CMR for PVAI-L detection after RFCA can improve the results of ablation procedures.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Male , Middle Aged , Aged , Female , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Contrast Media , Treatment Outcome , Gadolinium , Magnetic Resonance Spectroscopy , Catheter Ablation/adverse effects , Catheter Ablation/methods , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery
2.
Eur Heart J Suppl ; 25(Suppl C): C265-C270, 2023 May.
Article in English | MEDLINE | ID: mdl-37125279

ABSTRACT

Radiofrequency (RF) catheter ablation has become a widely used therapeutic approach. However, long-term results in terms of arrhythmia recurrence are still suboptimal. Cardiac magnetic resonance (CMR) could offer a valuable tool to overcome this limitation, with the possibility of targeting the arrhythmic substrate and evaluating the location, depth, and possible gaps of RF lesions. Moreover, real-time CMR-guided procedures offer a radiation-free approach with an evaluation of anatomical structures, substrates, RF lesions, and possible complications during a single procedure. The first steps in the field have been made with cavotricuspid isthmus ablation, showing similar procedural duration and success rate to standard fluoroscopy-guided procedures, while allowing visualization of anatomic structures and RF lesions. These promising results open the path for further studies in the context of more complex arrhythmias, like atrial fibrillation and ventricular tachycardias. Of note, setting up an interventional CMR (iCMR) centre requires safety and technical standards, mostly related to the need for CMR-compatible equipment and medical staff's educational training. For the cardiac imagers, it is fundamental to provide correct CMR sequences for catheter tracking and guide RF delivery. At the same time, the electrophysiologist needs a rapid interpretation of CMR images during the procedures. The aim of this paper is first to review the logistic and technical aspects of setting up an iCMR suite. Then, we will describe the experience in iCMR-guided flutter ablations of two European centres, Policlinico Casilino in Rome, Italy, and Haga Teaching Hospital in The Hague, the Netherlands.

3.
Ther Adv Cardiovasc Dis ; 16: 17539447221119624, 2022.
Article in English | MEDLINE | ID: mdl-36039865

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) provides excellent temporal and spatial resolution, tissue characterization, and flow measurements. This enables major advantages when guiding cardiac invasive procedures compared with X-ray fluoroscopy or ultrasound guidance. However, clinical implementation is limited due to limited availability of technological advancements in magnetic resonance imaging (MRI) compatible equipment. A systematic review of the available literature on past and present applications of interventional MR and its technology readiness level (TRL) was performed, also suggesting future applications. METHODS: A structured literature search was performed using PubMed. Search terms were focused on interventional CMR, cardiac catheterization, and other cardiac invasive procedures. All search results were screened for relevance by language, title, and abstract. TRL was adjusted for use in this article, level 1 being in a hypothetical stage and level 9 being widespread clinical translation. The papers were categorized by the type of procedure and the TRL was estimated. RESULTS: Of 466 papers, 117 papers met the inclusion criteria. TRL was most frequently estimated at level 5 meaning only applicable to in vivo animal studies. Diagnostic right heart catheterization and cavotricuspid isthmus ablation had the highest TRL of 8, meaning proven feasibility and efficacy in a series of humans. CONCLUSION: This article shows that interventional CMR has a potential widespread application although clinical translation is at a modest level with TRL usually at 5. Future development should be directed toward availability of MR-compatible equipment and further improvement of the CMR techniques. This could lead to increased TRL of interventional CMR providing better treatment.


Subject(s)
Magnetic Resonance Imaging, Interventional , Animals , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Interventional/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...