Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38619181

ABSTRACT

Virtual fencing (VF) is a modern fencing technology that requires the animal to wear a device (e.g., a collar) that emits acoustic signals to replace the visual cue of traditional physical fences (PF) and, if necessary, mild electric signals. The use of devices that provide electric signals leads to concerns regarding the welfare of virtually fenced animals. The objective of this review is to give an overview of the current state of VF research into the welfare and learning behavior of cattle. Therefore, a systematic literature search was conducted using two online databases and reference lists of relevant articles. Studies included were peer-reviewed and written in English, used beef or dairy cattle, and tested neck-mounted VF devices. Further inclusion criteria were a combination of audio and electrical signals and a setup as a pasture trial, which implied that animals grazed in groups on grassland for 4 h minimum while at least one fence side was virtually fenced. The eligible studies (n = 13) were assigned to one or two of the following categories: animal welfare (n studies = 8) or learning behavior (n studies = 9). As data availability for conducting a meta-analysis was not sufficient, a comparison of the means of welfare indicators (daily weight gain, daily lying time, steps per hour, daily number of lying bouts, and fecal cortisol metabolites [FCM]) for virtually and physically fenced animals was done instead. In an additional qualitative approach, the results from the welfare-related studies were assembled and discussed. For the learning behavior, the number of acoustic and electric signals and their ratio were used in a linear regression model with duration in days as a numeric predictor to assess the learning trends over time. There were no significant differences between VF and PF for most welfare indicators (except FCM with lower values for VF; P = 0.0165). The duration in days did not have a significant effect on the number of acoustic and electric signals. However, a significant effect of trial duration on the ratio of electric-to-acoustic signals (P = 0.0014) could be detected, resulting in a decreasing trend of the ratio over time, which suggests successful learning. Overall, we conclude that the VF research done so far is promising but is not yet sufficient to ensure that the technology could not have impacts on the welfare of certain cattle types. More research is necessary to investigate especially possible long-term effects of VF.


Virtual fencing is a GPS-enabled fencing technology with the potential for improved livestock and pasture management, as well as socioeconomic and environmental benefits. However, the missing visual cue of a physical fence and the use of electric signals to ensure animals stay within the invisible boundary raise ethical and animal welfare concerns regarding the animal's ability to understand and learn the technology and the stress and anxiety associated with these processes. In this review, data from studies investigating the welfare and learning behaviors of virtually fenced animals were collected and analyzed to give an overview of this research field. It shows that the welfare of cattle in extensive systems is not adversely affected by the virtual fencing system, and the animals learn to avoid the electric signals. However, more research is necessary, especially over longer periods of time and with cows in intensive grazing systems, to ensure the welfare of virtually fenced cattle.


Subject(s)
Animal Husbandry , Animal Welfare , Animals , Cattle/physiology , Animal Husbandry/methods , Behavior, Animal , Learning
2.
Oecologia ; 199(2): 471-485, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35545720

ABSTRACT

Eutrophication through atmospheric nutrient deposition is threatening the biodiversity of semi-natural habitats characterized by low nutrient availability. Accordingly, local management measures aiming at open habitat conservation need to maintain habitat-specific nutrient conditions despite atmospheric inputs. Grazing by wild herbivores, such as red deer (Cervus elaphus), has been proposed as an alternative to mechanical or livestock-based measures for preserving open habitats. The role of red deer for nutrient dynamics in protected open habitat types, however, is yet unclear. Therefore, we collected data on vegetation productivity, forage removal, quantity of red deer dung and nutrient concentrations in vegetation and dung from permanent plots in heathlands and grasslands (eight plots à 225 m2 per habitat type) on a military training area inhabited by a large population of free-ranging red deer over one year. The annual nutrient export of nitrogen (N) and phosphorus (P) by red deer grazing was higher than the nutrient import through red deer excreta, resulting in an average net nutrient removal of 14 and 30 kg N ha-1 a-1 and 1.1 and 3.3 kg P ha-1 a-1 in heathlands and grasslands, respectively. Even when considering approximate local atmospheric deposition values, net nutrient depletion due to red deer grazing seemed very likely, notably in grasslands. Demonstrating that grazing by wild red deer can mitigate the effects of atmospheric nutrient deposition in semi-natural open habitats similarly to extensive livestock grazing, our results support the idea that red deer are suitable grazing animals for open habitat conservation.


Subject(s)
Deer , Animals , Biodiversity , Ecosystem , Herbivory , Nutrients
3.
Nat Ecol Evol ; 1(9): 1279-1284, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29046556

ABSTRACT

Agricultural intensification drives biodiversity loss and shapes farmers' profit, but the role of legacy effects and detailed quantification of ecological-economic trade-offs are largely unknown. In Europe during the 1950s, the Eastern communist bloc switched to large-scale farming by forced collectivization of small farms, while the West kept small-scale private farming. Here we show that large-scale agriculture in East Germany reduced biodiversity, which has been maintained in West Germany due to >70% longer field edges than those in the East. In contrast, profit per farmland area in the East was 50% higher than that in the West, despite similar yield levels. In both regions, switching from conventional to organic farming increased biodiversity and halved yield levels, but doubled farmers' profits. In conclusion, European Union policy should acknowledge the surprisingly high biodiversity benefits of small-scale agriculture, which are on a par with conversion to organic agriculture.


Subject(s)
Agriculture/methods , Biodiversity , Conservation of Natural Resources , Agriculture/economics , Communism , Germany , Organic Agriculture/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...