Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 12(11): 1794-1801, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34795869

ABSTRACT

The PI3K/AKT/mTOR and PIM kinase pathways contribute to the development of several hallmarks of cancer. Cotargeting of these pathways has exhibited promising synergistic therapeutic effects in liquid and solid tumor types. To identify molecules with combined activities, we cross-screened our collection of PI3K/(±mTOR) macrocycles (MCXs) and identified the MCX thieno[3,2-d]pyrimidine derivative 2 as a moderate dual PI3K/PIM-1 inhibitor. We report the medicinal chemistry exploration and biological characterization of a series of thieno[3,2-d]pyrimidine MCXs, which led to the discovery of IBL-302 (31), a potent, selective, and orally bioavailable triple PI3K/mTOR/PIM inhibitor. IBL-302, currently in late preclinical development (AUM302), has recently demonstrated efficacy in neuroblastoma and breast cancer xenografts. Additionally, during the course of our experiments, we observed that macrocyclization was essential to obtain the desired multitarget profile. As a matter of example, the open precursors 35-37 were inactive against PIM whereas MCX 28 displayed low nanomolar activity.

3.
Eur J Med Chem ; 211: 113109, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33360802

ABSTRACT

Activation of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway occurs frequently in a wide range of human cancers and is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells. Compounds targeting this pathway are under active development as anticancer therapeutics and some of them have reached advanced clinical trials or been approved by the FDA. Dual PI3K/mTOR inhibitors combine multiple therapeutic efficacies in a single molecule by inhibiting the pathway both upstream and downstream of AKT. Herein, we report our efforts on the exploration of novel small molecule macrocycles (MCXs) as dual PI3K/mTOR inhibitors. Macrocyclization is an attractive approach used in drug discovery, as the semi-rigid character of these structures could provide improved potency, selectivity and favorable pharmacokinetic properties. Importantly, this strategy allows access to new chemical space thus obtaining a better intellectual property position. A series of MCXs based on GSK-2126458, a known clinical PI3K/mTOR inhibitor is described. These molecules showed potent biochemical and cellular dual PI3K/mTOR inhibition, demonstrated strong antitumoral effects in human cancer cell lines, and displayed good drug-like properties. Among them, MCX 83 presented remarkable selectivity against a panel of 468 kinases, high in vitro metabolic stability, and favorable pharmacokinetic parameters without significant CYP450 and h-ERG binding inhibition. This profile qualified this compound as a suitable candidate for future in vivo PK-PD and efficacy studies in mouse cancer models.


Subject(s)
Phosphatidylinositol 3-Kinases/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use , Sulfonamides/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Humans , Phosphatidylinositol 3-Kinases/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridazines , Quinolines/pharmacology , Sulfonamides/pharmacology
4.
Chemistry ; 20(9): 2663-71, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24443247

ABSTRACT

A series of four α-diketones placed as 1α-pyruvoyl tethers on D-glucopyranose and D-glucopyranosiduronic acid skeletons was prepared in order to determine the influence of captodative and stereoelectronic effects on the regioselectivity of the hydrogen atom transfer (HAT) in Norrish type II photochemical processes. We observed that the 1,5-HAT regioselectivity can be switched between the two potentially abstractable syn-1,3-diaxial hydrogens at H6 and H8. Highly unusual photoproducts from Norrish type II photoelimination and Norrish-Yang photocyclization initiated by the excited internal carbonyl group were obtained, in some cases in excellent synthetic yield. The 1,5-HAT transition state in the Norrish type II photoelimination was investigated by photochemical experiments in the crystalline state.


Subject(s)
Carbohydrates/chemistry , Ketones/chemistry , Pyruvates/chemistry , Cyclization , Molecular Structure , Photochemical Processes , Photochemistry
5.
Chemistry ; 19(31): 10312-33, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-23788424

ABSTRACT

The excitation of the innermost carbonyl of nono-2,3-diulose derivatives by irradiation with visible-light initiates a sequential Norrish type II photoelimination and aldol cyclization process that finally gives polyfunctionalized cyclopentitols. The rearrangement has been confirmed by the isolation of stable acyclic photoenol intermediates that can be independently cyclized by a thermal 5-(enolexo)-exo-trig uncatalyzed aldol reaction with high diastereoselectivity. In this last step, the large deuterium kinetic isotope effect found for the 1,5-hydrogen atom transfer seems to indicate that the aldol reaction runs through a concerted pericyclic mechanism. Owing to the ready availability of pyranose sugars of various configurations, this protocol has been used to study the influence of pyranose ring-substituents on the diastereoselectivity of the aldol cyclization reaction. In contrast with other pyranose ring contraction methodologies no transition-metal reagents are needed and the sequential rearrangement occurs simply by using visible light and moderate heating (0 to 60 °C).


Subject(s)
Carbohydrates/chemical synthesis , Aldehydes/chemistry , Carbohydrates/chemistry , Cyclization , Ketones/chemical synthesis , Molecular Structure , Photochemical Processes
8.
J Org Chem ; 69(24): 8437-44, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15549818

ABSTRACT

The synthesis of highly functionalized nitriles by an alkoxyl radical fragmentation of cyclic beta-hydroxy azides is described. The alkoxyl radicals were generated by reaction of the alcohols with (diacetoxyiodo)benzene and iodine under mild conditions compatible with the presence of sensitive substituents and the protective groups most frequently used in carbohydrate chemistry. To explore the scope and limitations of this methodology, experiments were carried out using a variety of beta-hydroxy azides of the carbohydrate (1-6, 33, and 41), monoterpenoid (21 and 22), and steroid (23-25) families of natural products. Of special interest are the aldopentonitriles (15-18, 34, and 42) and aldotetrononitriles (19 and 20) synthesized from the corresponding 2-azido-2-deoxycarbohydrates. To demonstrate the versatility of these aldononitriles as chiral synthons, 1,4-imino-1-deoxysugar (37) and 1,5-imino-1-deoxysugar (43) analogues of the polyhydroxypyrrolidine and -piperidine types were prepared.


Subject(s)
Azides/chemistry , Free Radicals/chemistry , Nitriles/chemical synthesis , Sugar Alcohols/chemical synthesis , Molecular Conformation , Nitriles/chemistry
9.
Chemistry ; 9(23): 5800-9, 2003 Dec 05.
Article in English | MEDLINE | ID: mdl-14673851

ABSTRACT

Treatment of 1,2-fluorohydrins, 1,2-chlorohydrins, 1,2-bromohydrins, and 1,2-iodohydrins of the D-gluco, D-galacto, D-lacto, L-rhamno, D-allo, L-arabino, 3-deoxy-D-gluco, and 3,4-dideoxy-D-gluco families of carbohydrates with the (diacetoxyiodo)benzene/iodine system afforded 1-fluoro-1-iodo, 1-chloro-1-iodo, 1-bromo-1-iodo, and 1,1-diiodo alditols, respectively, in excellent yields. The reaction was achieved by radical fragmentation of the C1bond;C2 bond, triggered by the initially formed anomeric alkoxy radical, and subsequent trapping of the C2-radical by iodine atoms. This methodology is compatible with the stability of the protective groups most frequently used in carbohydrate chemistry. The potential utility of these 1-halo-1-iodo alditols as chiral synthons was evaluated by their transformation into alk-1-enyl iodides and in the Takai E-olefination reaction.

11.
Angew Chem Int Ed Engl ; 40(12): 2326-2328, 2001 Jun 18.
Article in English | MEDLINE | ID: mdl-29711841

ABSTRACT

One less carbon atom is found in 1-halo-1-iodo compounds obtained by C1-C2 radical fragmentation of carbohydrate 1,2-halohydrins. This fragmentation is achieved via the anomeric alkoxy radicals of the halohydrins, formed upon reaction with (diacetoxyiodo)benzene and iodine [Eq. (1); X=Cl, Br, I].

SELECTION OF CITATIONS
SEARCH DETAIL
...