Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biointerphases ; 6(1): 22-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21428692

ABSTRACT

Recently, numerous innovative approaches have attempted to overcome the shortcomings of standard tissue culturing by providing custom-tailored substrates with superior features. In particular, tunable surface chemistry and topographical micro- and nanostructuring have been highlighted as potent effectors to control cell behavior. Apart from tissue engineering and the development of biosensors and diagnostic assays, the need for custom-tailored platform systems is accentuated by a variety of complex and poorly characterized biological processes. One of these processes is cell-to-cell communication mediated by tunneling nanotubes (TNTs), the reliable statistical analysis of which is consistently hampered by critical dependencies on various experimental factors, such as cell singularization, spacing, and alignment. Here, the authors developed a microstructured platform based on a combination of controlled surface chemistry along with topographic parameters, which permits the controllable attachment of different cell types to complementary patterns of cell attracting/nonattracting surface domains and-as a consequence-represents a standardized analysis tool to approach a wide range of biological questions. Apart from the technical complementation of mainstream applications, the developed surfaces could successfully be used to statistically determine TNT-based intercellular connection processes as they are occurring in standard as well as primary cell cultures.


Subject(s)
Cell Adhesion , Cell Communication , Nanotubes/chemistry , Animals , Cell Culture Techniques , Cell Line, Tumor , Rats , Surface Properties
2.
Glia ; 42(1): 89-100, 2003 Apr 01.
Article in English | MEDLINE | ID: mdl-12594740

ABSTRACT

The mannose receptor is a pattern-recognition receptor involved in innate and adaptive immunity. The receptor is mainly expressed by macrophages and, within the brain, by astrocytes and microglia. This study reports for the first time the effects of two classical proinflammatory (interferon-gamma, IFNgamma) and anti-inflammatory (interleukin-4, IL-4) cytokines on the levels of expression and activity of the mannose receptor expressed by mouse microglia, the brain resident macrophages. As observed for macrophages, IFNgamma treatment led to a decrease and IL-4 to an increase of mannose receptor expression. Consequently, the rates of pinocytosis were strongly upregulated by IL-4 and inhibited by IFNgamma. This latter, however, resumed with time and reached again the constitutive rate of pinocytosis. This recovery resulted from an increased pinocytic activity of the few mannose receptor molecules still expressed by IFNgamma-treated microglia. This may suggest a brain-specific regulation of the effects of IFNgamma since such a phenomenon has not been observed in macrophages. Together, these observations demonstrate that cytokine-stimulated immunocompetent microglia express a functional mannose receptor.


Subject(s)
Immunocompetence/physiology , Lectins, C-Type , Mannose-Binding Lectins , Microglia/immunology , Microglia/metabolism , Receptors, Cell Surface/physiology , Animals , Cells, Cultured , Interferon-gamma/pharmacology , Interleukin-4/pharmacology , Mannose Receptor , Mice , Mice, Inbred BALB C , Receptors, Cell Surface/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...