Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Announc ; 1(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-23405339

ABSTRACT

The complete genome sequence of Listeria monocytogenes LL195, a serotype 4b clinical strain isolated during the 1983-1987 listeriosis epidemic in Switzerland, is presented.

2.
Mol Phylogenet Evol ; 53(3): 703-15, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19635577

ABSTRACT

Buteonine hawks represent one of the most diverse groups in the Accipitridae, with 58 species distributed in a variety of habitats on almost all continents. Variations in migratory behavior, remarkable dispersal capability, and unusual diversity in Central and South America make buteonine hawks an excellent model for studies in avian evolution. To evaluate the history of their global radiation, we used an integrative approach that coupled estimation of the phylogeny using a large sequence database (based on 6411 bp of mitochondrial markers and one nuclear intron from 54 species), divergence time estimates, and ancestral state reconstructions. Our findings suggest that Neotropical buteonines resulted from a long evolutionary process that began in the Miocene and extended to the Pleistocene. Colonization of the Nearctic, and eventually the Old World, occurred from South America, promoted by the evolution of seasonal movements and development of land bridges. Migratory behavior evolved several times and may have contributed not only to colonization of the Holarctic, but also derivation of insular species. In the Neotropics, diversification of the buteonines included four disjunction events across the Andes. Adaptation of monophyletic taxa to wet environments occurred more than once, and some relationships indicate an evolutionary connection among mangroves, coastal and várzea environments. On the other hand, groups occupying the same biome, forest, or open vegetation habitats are not monophyletic. Refuges or sea-level changes or a combination of both was responsible for recent speciation in Amazonian taxa. In view of the lack of concordance between phylogeny and classification, we propose numerous taxonomic changes.


Subject(s)
Animal Migration , Evolution, Molecular , Hawks/genetics , Phylogeny , Animals , Bayes Theorem , Cell Nucleus/genetics , Central America , DNA, Mitochondrial/genetics , Ecosystem , Hawks/classification , Likelihood Functions , Models, Genetic , Nucleic Acid Conformation , Sequence Alignment , Sequence Analysis, DNA , South America
3.
Mol Phylogenet Evol ; 27(2): 328-42, 2003 May.
Article in English | MEDLINE | ID: mdl-12695095

ABSTRACT

DNA sequences of the mitochondrial nd6 gene and the non-repetitive part of the pseudo-control region (PsiCR) were isolated from 101 individuals to analyze the phylogenetic relationships among all buzzards of the genus Buteo and other buteonine genera. Comparisons of the two marker sequences indicate that the PsiCR evolved two times faster than the nd6 gene. The PsiCR proved to be an efficient, neutral genetic marker sequence for phylogenetic analyses at the intrageneric level, especially suitable for analyses based on old tissues, where only short fragments can be obtained. The molecular data set implies a neotropical origin of the genus Buteo. Monophyly of the genus Buteo as currently defined is contradicted due to the positions of Asturina nitida, Geranoaetus melanoleucus, Buteo magnirostris, and Buteo leucorrhous. These findings suggest several taxonomic consequences. A. nitida and G. melanoleucus should be included into the genus Buteo. Moreover, B. leucorrhous should be transferred into the genus Percnohierax (which clusters with Parabuteo), and B. magnirostris into the genus Rupornis. According to this classification of the genus Buteo, the basal lineage of the genus is formed by a clade containing Buteo polyosoma, Buteo poecilochrous, and Buteo melanoleucus. The "woodland buteos" form a paraphyletic assemblage with B. magnirostris as a clearly separated lineage basal to the genus Buteo.


Subject(s)
Birds/classification , DNA, Mitochondrial/genetics , Phylogeny , Animals , Base Sequence , Birds/genetics , Cluster Analysis , DNA Primers/genetics , Genetic Variation , Geography , Likelihood Functions , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...