Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 15(1): e2000080, 2017 01.
Article in English | MEDLINE | ID: mdl-28060820

ABSTRACT

Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography-mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.


Subject(s)
Proteolysis , Receptors, Interleukin-6/metabolism , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Alternative Splicing/genetics , Amino Acid Sequence , Amyloid Precursor Protein Secretases/metabolism , Cell Line , Cell Membrane/metabolism , Glycosylation , Humans , Intracellular Space/metabolism , Mass Spectrometry , Membrane Proteins/metabolism , Mutation/genetics , Polysaccharides/metabolism , Proline/metabolism , Protein Domains , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/chemistry , Receptors, Interleukin-6/genetics , Signal Transduction , Solubility , Valine/metabolism
2.
Sci Rep ; 6: 25550, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27151651

ABSTRACT

Limited proteolysis of the Interleukin-6 Receptor (IL-6R) leads to the release of the IL-6R ectodomain. Binding of the cytokine IL-6 to the soluble IL-6R (sIL-6R) results in an agonistic IL-6/sIL-6R complex, which activates cells via gp130 irrespective of whether the cells express the IL-6R itself. This signaling pathway has been termed trans-signaling and is thought to mainly account for the pro-inflammatory properties of IL-6. A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 are the major proteases that cleave the IL-6R. We have previously shown that deletion of a ten amino acid long stretch within the stalk region including the cleavage site prevents ADAM17-mediated cleavage, whereas the receptor retained its full biological activity. In the present study, we show that deletion of a triple serine (3S) motif (Ser-359 to Ser-361) adjacent to the cleavage site is sufficient to prevent IL-6R cleavage by ADAM17, but not ADAM10. We find that the impaired shedding is caused by the reduced distance between the cleavage site and the plasma membrane. Positioning of the cleavage site in greater distance towards the plasma membrane abrogates ADAM17-mediated shedding and reveals a novel cleavage site of ADAM10. Our findings underline functional differences in IL-6R proteolysis by ADAM10 and ADAM17.


Subject(s)
ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Proteolysis , Receptors, Interleukin-6/metabolism , ADAM10 Protein/genetics , ADAM17 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Cell Line , DNA Mutational Analysis , Humans , Membrane Proteins/genetics , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...