Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 4(1)2021 01.
Article in English | MEDLINE | ID: mdl-33234679

ABSTRACT

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug-drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.


Subject(s)
Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Piperidines/administration & dosage , Pyrazoles/administration & dosage , Pyridazines/administration & dosage , RNA Splicing/drug effects , Animals , Animals, Newborn , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Motor Neurons/metabolism , Muscular Atrophy, Spinal/metabolism , Phenotype , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Time-to-Treatment
2.
Bioorg Med Chem Lett ; 27(23): 5144-5148, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29103974

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disorder that results from mutations in the SMN1 gene, leading to survival motor neuron (SMN) protein deficiency. One therapeutic strategy for SMA is to identify compounds that enhance the expression of the SMN2 gene, which normally only is a minor contributor to functional SMN protein production, but which is unaffected in SMA. A recent high-throughput screening campaign identified a 3,4-dihydro-4-phenyl-2(1H)-quinolinone derivative (2) that increases the expression of SMN2 by 2-fold with an EC50 = 8.3 µM. A structure-activity relationship (SAR) study revealed that the array of tolerated substituents, on either the benzo portion of the quinolinone or the 4-phenyl, was very narrow. However, the lactam ring of the quinolinone was more amenable to modifications. For example, the quinazolinone (9a) and the benzoxazepin-2(3H)-one (19) demonstrated improved potency and efficacy for increase in SMN2 expression as compared to 2.


Subject(s)
Quinolones/chemistry , Survival of Motor Neuron 2 Protein/metabolism , Animals , Cell Line , Cyclization , Gene Expression/drug effects , Humans , Mice , Microsomes, Liver/metabolism , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Quinolones/pharmacology , RNA, Messenger/metabolism , Solubility , Structure-Activity Relationship , Survival of Motor Neuron 2 Protein/genetics
3.
PLoS One ; 12(9): e0185079, 2017.
Article in English | MEDLINE | ID: mdl-28945765

ABSTRACT

C5-substituted 2,4-diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS (DAQ-DcpSi) have been developed for the treatment of spinal muscular atrophy (SMA), which is caused by genetic deficiency in the Survival Motor Neuron (SMN) protein. These compounds are claimed to act as SMN2 transcriptional activators but data underlying that claim are equivocal. In addition it is unclear whether the claimed effects on SMN2 are a direct consequence of DcpS inhibitor or might be a consequence of lysosomotropism, which is known to be neuroprotective. DAQ-DcpSi effects were characterized in cells in vitro utilizing DcpS knockdown and 7-methyl analogues as probes for DcpS vs non-DcpS-mediated effects. We also performed analysis of Smn transcript levels, RNA-Seq analysis of the transcriptome and SMN protein in order to identify affected pathways underlying the therapeutic effect, and studied lysosomotropic and non-lysosomotropic DAQ-DCpSi effects in 2B/- SMA mice. Treatment of cells caused modest and transient SMN2 mRNA increases with either no change or a decrease in SMNΔ7 and no change in SMN1 transcripts or SMN protein. RNA-Seq analysis of DAQ-DcpSi-treated N2a cells revealed significant changes in expression (both up and down) of approximately 2,000 genes across a broad range of pathways. Treatment of 2B/- SMA mice with both lysomotropic and non-lysosomotropic DAQ-DcpSi compounds had similar effects on disease phenotype indicating that the therapeutic mechanism of action is not a consequence of lysosomotropism. In striking contrast to the findings in vitro, Smn transcripts were robustly changed in tissues but there was no increase in SMN protein levels in spinal cord. We conclude that DAQ-DcpSi have reproducible benefit in SMA mice and a broad spectrum of biological effects in vitro and in vivo, but these are complex, context specific, and not the result of simple SMN2 transcriptional activation.


Subject(s)
Endoribonucleases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/enzymology , Quinazolines/pharmacology , Animals , Cell Line , Disease Models, Animal , Enzyme Inhibitors/chemistry , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Muscular Atrophy, Spinal/genetics , Promoter Regions, Genetic , Quinazolines/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Survival of Motor Neuron 2 Protein/deficiency , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
4.
J Med Chem ; 60(11): 4594-4610, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28481536

ABSTRACT

Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.


Subject(s)
Anilides/pharmacology , Benzamides/pharmacology , Isoxazoles/pharmacology , Molecular Probes , Muscular Atrophy, Spinal/therapy , Protein Processing, Post-Translational , Quinolones/pharmacology , Survival of Motor Neuron 1 Protein/metabolism , Thiazoles/pharmacology , Anilides/pharmacokinetics , Anilides/therapeutic use , Area Under Curve , Benzamides/pharmacokinetics , Benzamides/therapeutic use , Cell Line , Drug Discovery , Half-Life , Humans , Isoxazoles/pharmacokinetics , Isoxazoles/therapeutic use , Protein Stability , Quinolones/pharmacokinetics , Quinolones/therapeutic use , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/therapeutic use
5.
PLoS Pathog ; 12(10): e1005934, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27701460

ABSTRACT

The origin recognition complex (ORC) coordinates a series of events that lead to initiation of DNA strand duplication. As a nuclear double stranded DNA plasmid, the papillomavirus (PV) genome resembles a mini-chromosome in infected cells. To initiate its replication, the viral E2 protein binds to and recruits the E1 DNA helicase at the viral origin. PV genome replication program exhibits three stages: initial amplification from a single genome upon infection to a few copies per cell, a cell cycle linked maintenance phase, and a differentiation dependent late stage where the genome is amplified to thousands of copies. Involvement of ORC or other pre-replication complex (pre-RC) factors has not been described. We report that human PV (HPV) and bovine PV (BPV-1) E2 proteins bind to ORC2, however, ORC2 was not detected at the viral origin. Depletion of ORC2 enhanced PV replication in a transient replication model and in keratinocytes stably maintaining viral episomes, while there was no effect on copy number in a cell line with integrated HPV genomes. Consistent with this, occupancy of E1 and E2 at the viral origin increased following ORC2 silencing. These data imply that ORC2 is not necessary for activation of the PV origin by E1 and E2 but instead suppresses E2 replicative function. Furthermore, we observed that over-expression of HPV E2 decreased ORC2 occupation at two known mammalian origins of replication, suggesting that E2 restricts pre-ORC assembly that could otherwise compete for host replication complexes necessary for viral genome amplification. We infer that the ORC2 complex with E2 restricts viral replication in the maintenance phase of the viral replication program and that elevated levels of E2 that occur during the differentiation dependent amplification stage subvert ORC loading and hence DNA synthesis at cellular origins.


Subject(s)
DNA-Binding Proteins/metabolism , Oncogene Proteins, Viral/metabolism , Origin Recognition Complex/metabolism , Papillomaviridae/physiology , Virus Replication/physiology , Bovine papillomavirus 1/physiology , Cell Line , Chromatin Immunoprecipitation , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation
6.
PLoS One ; 11(2): e0149845, 2016.
Article in English | MEDLINE | ID: mdl-26915086

ABSTRACT

The human papillomavirus (HPV) HPV E6 protein has emerged as a central oncoprotein in HPV-associated cancers in which sustained expression is required for tumor progression. A majority of the E6 protein interactions within the human proteome use an alpha-helix groove interface for binding. The UBE3A/E6AP HECT domain ubiquitin ligase binds E6 at this helix-groove interface. This enables formation of a trimeric complex with p53, resulting in destruction of this tumor suppressor. While recent x-ray crystal structures are useful, examples of small molecule probes that can modulate protein interactions at this interface are limited. To develop insights useful for potential structure-based design of ligands for HPV E6, a series of 2,6-disubstituted benzopyranones were prepared and tested as competitive antagonists of E6-E6AP helix-groove interactions. These small molecule probes were used in both binding and functional assays to evaluate recognition features of the E6 protein. Evidence for an ionic functional group interaction within the helix groove was implicated by the structure-activity among the highest affinity ligands. The molecular topographies of these protein-ligand interactions were evaluated by comparing the binding and activities of single amino acid E6 mutants with the results of molecular dynamic simulations. A group of arginine residues that form a rim-cap over the E6 helix groove offer compensatory roles in binding and recognition of the small molecule probes. The flexibility and impact on the overall helix-groove shape dictated by these residues offer new insights for structure-based targeting of HPV E6.


Subject(s)
Benzopyrans/chemistry , Benzopyrans/pharmacology , Molecular Probes/chemistry , Molecular Probes/pharmacology , Oncogene Proteins, Viral/antagonists & inhibitors , Oncogene Proteins, Viral/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Oncogene Proteins, Viral/chemistry , Protein Binding , Protein Structure, Secondary , Repressor Proteins/chemistry
7.
PLoS One ; 8(12): e84506, 2013.
Article in English | MEDLINE | ID: mdl-24376816

ABSTRACT

Expression and function of the human papillomavirus (HPV) early protein 6 (E6) is necessary for viral replication and oncogenesis in cervical cancers. HPV E6 targets the tumor suppressor protein p53 for degradation. To achieve this, "high-risk" HPV E6 proteins bind to and modify the target specificity of the ubiquitin ligase E6AP (E6 associated protein). This E6-dependent loss of p53 enables the virus to bypass host cell defenses and facilitates virally induced activation of the cell cycle progression during viral replication. Disruption of the interaction between E6 and E6AP and stabilization of p53 should decrease viability and proliferation of HPV positive cells. A new in vitro high-throughput binding assay was developed to assay binding between HPV-16 E6 and E6AP and to identify compounds that inhibit this interaction. The compound luteolin emerged from the screen and a library of novel flavones based on its structure was synthesized and characterized using this in vitro binding assay. The compounds identified in this study disrupt the E6/E6AP interaction, increase the levels of p53 and p21(Cip1/Waf1), and decrease proliferation of HPV positive cell lines. The new class of flavonoid E6 inhibitors displays a high degree of specificity for HPV positive cells. Docking analyses suggest that these compounds bind in a hydrophobic pocket at the interface between E6 and E6AP and mimic the leucines in the conserved α-helical motif of E6AP. The activity and specificity of these compounds represent a promising new lead for development as an antiviral therapy in the treatment of HPV infection and cervical cancer.


Subject(s)
Flavonoids/chemistry , Human papillomavirus 16/drug effects , Models, Molecular , Oncogene Proteins, Viral/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Uterine Cervical Neoplasms/virology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Discovery , Female , Flavonoids/antagonists & inhibitors , Flavonoids/pharmacology , High-Throughput Screening Assays/methods , Humans , Luteolin/pharmacology , Molecular Structure , Oncogene Proteins, Viral/chemistry , Protein Binding/physiology , Repressor Proteins/chemistry , Tumor Suppressor Protein p53/metabolism , Uterine Cervical Neoplasms/drug therapy
8.
J Biol Chem ; 282(38): 27640-6, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17635931

ABSTRACT

The cytotoxic action of ribonucleases (RNases) requires the interaction of the enzyme with the cellular membrane, its internalization, translocation to the cytosol, and the degradation of ribonucleic acid. The interplay of these processes as well as the role of the thermodynamic and proteolytic stability, the catalytic activity, and the evasion from the intracellular ribonuclease inhibitor (RI) has not yet been fully elucidated. As cytosolic internalization is indispensable for the cytotoxicity of extracellular ribonucleases, we investigated the extent of cytosolic internalization of a cytotoxic, RI-evasive RNase A variant (G88R-RNase A) and of various similarly cytotoxic but RI-sensitive RNase A tandem enzyme variants in comparison to the internalization of the non-cytotoxic and RI-sensitive RNase A. After incubation of K-562 cells with the RNase A variants for 36 h, the internalized amount of RNases was analyzed by rapid cell disruption followed by subcellular fractionation and semiquantitative immunoblotting. The data indicate that an enhanced cellular uptake and an increased entry of the RNases into the cytosol can outweigh the abolishment of catalytic activity by RI. As all RNase A variants proved to be resistant to the proteases present in the different subcellular fractions for more than 100 h, our results suggest that the cytotoxic potency of RNases is determined by an efficient internalization into the cytosol.


Subject(s)
Endocytosis , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/metabolism , Cytosol/metabolism , Endoribonucleases/metabolism , Endosomes/metabolism , Enzyme Stability , Humans , K562 Cells , Lysosomes/metabolism , Protein Conformation , Proteins/chemistry , Ribonucleases/metabolism , Subcellular Fractions , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...