Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncolytics ; 17: 408-420, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32462078

ABSTRACT

Chimeric antigen receptor T cells (CAR-T) targeting CD19 or B cell maturation antigen (BCMA) are highly effective against B cell malignancies. However, application of CAR-T to less differentially expressed targets remains a challenge due to lack of tumor-specific antigens and CAR-T controllability. CD123, a highly promising leukemia target, is expressed not only by leukemic and leukemia-initiating cells, but also by myeloid, hematopoietic progenitor, and certain endothelial cells. Thus, CAR-T lacking fine-tuned control mechanisms pose a high toxicity risk. To extend the CAR-T target landscape and widen the therapeutic window, we adapted our rapidly switchable universal CAR-T platform (UniCAR) to target CD123. UniCAR-T efficiently eradicated CD123+ leukemia in vitro and in vivo. Activation, cytolytic response, and cytokine release were strictly dependent on the presence of the CD123-specific targeting module (TM123) with comparable efficacy to CD123-specific CAR-T in vitro. We further demonstrated a pre-clinical proof of concept for the safety-switch mechanism using a hematotoxicity mouse model wherein TM123-redirected UniCAR-T showed reversible toxicity toward hematopoietic cells compared to CD123 CAR-T. In conclusion, UniCAR-T maintain full anti-leukemic efficacy, while ensuring rapid controllability to improve safety and versatility of CD123-directed immunotherapy. The safety and efficacy of UniCAR-T in combination with TM123 will now be assessed in a phase I clinical trial (ClinicalTrials.gov: NCT04230265).

2.
J Immunol ; 203(10): 2602-2613, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31578269

ABSTRACT

Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.


Subject(s)
Autoimmunity/genetics , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Transcription Factor RelB/metabolism , Animals , Cells, Cultured , Forkhead Transcription Factors/metabolism , Gene Knockout Techniques , Homeostasis/immunology , Immune Tolerance/immunology , Inflammation/immunology , Interleukin-33/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B p52 Subunit/metabolism , Transcription Factor RelB/deficiency , Transcription Factor RelB/genetics
3.
Article in English | MEDLINE | ID: mdl-31551927

ABSTRACT

The bone represents surprisingly dynamic structures that are subject to constant remodeling by the concerted action of bone-forming osteoblasts and bone-resorbing osteoclasts - two cell subsets of distinct developmental origin that are key in maintaining skeletal integrity throughout life. In general, abnormal bone remodeling due to dysregulated bone resorption and formation is an early event in the manifestation of various human bone diseases, such as osteopetrosis/osteoporosis and arthritis. But bone remodeling is also closely interrelated with lympho-hematopoietic homeostasis, as the bone marrow niche is formed by solid and trabecular bone structures that provide a framework for the long-term maintenance and differentiation of HSCs (>blood lineage cells and osteoclasts) and MSCs (>osteoblasts). Numerous studies in mice and humans have implicated innate and adaptive immune cells in the dynamic regulation of bone homeostasis, but despite considerable clinical relevance, the exact mechanisms of such immuno-bone interplay have remained incompletely understood. This holds particularly true for CD4+ regulatory T (Treg) cells expressing the lineage specification factor Foxp3: Foxp3+ Treg cells have been shown to play an indispensable role in maintaining immune homeostasis, but may also exert critical non-immune functions, which includes the control of metabolic and regenerative processes, as well as the differentiation of HSCs and function of osteoclasts. Here, we summarize our current knowledge on the T cell/bone interplay, with a particular emphasis on our own efforts to dissect the role of Foxp3+ Treg cells in bone and hematopoietic homeostasis, employing experimental settings of gain- and loss-of-Treg cell function. These data make a strong case that Foxp3+ Treg cells impinge on lympho-hematopoiesis through indirect mechanisms, i.e., by acting on osteoclast development and function, which translates into changes in niche size. Furthermore, we propose that, besides disorders that involve inflammatory bone loss, the modulation of Foxp3+ Treg cell function in vivo may represent a suitable approach to reinstate bone homeostasis in non-autoimmune settings of aberrant bone remodeling.

4.
Stem Cells Dev ; 24(11): 1374-6, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25779336

ABSTRACT

Recently, mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have been suggested as an alternative to MSCs for the treatment of various inflammatory disorders. However, while a first case report observed beneficial therapeutic effects of repeated MSC-EV infusions in a patient with therapy-refractory graft-versus-host disease, in vitro findings revealed that MSC-EVs were significantly less immunosuppressive than their parental cells. In this study, we compared the immunosuppressive potency of MSCs derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs), with their secreted EVs in a standardized lymphocyte proliferation assay (LPA). Both BM-MSCs and AT-MSCs exhibited a remarkable inhibition of lymphocyte proliferation (LP) (88.1%±1.5% and 75.5%±1.5%, respectively), while isolated EVs derived from them failed to suppress LP at dose levels up to 100 µg/mL. Thus, our data further substantiate previous reports suggesting that cell-cell contact plays an important role on the immunosuppressive potential mediated by MSCs. Hence, MSC-EVs are still a matter of debate and might not be a reasonable substitute for MSCs with regard to the immunosuppressive function. Collectively, these contrasting findings may also reflect the importance of relevant translational aspects when designing new studies. Standardization of MSC culture conditions before EV collection as well as isolation and characterization methods with regard to EV purity are urged. Moreover, before clinical use, dose-finding studies evaluating MSC-EV preparations in suitable preclinical models are warranted.


Subject(s)
Cell Proliferation , Extracellular Vesicles/immunology , Immunosuppressive Agents/immunology , Lymphocytes/immunology , Mesenchymal Stem Cells/immunology , Adipose Tissue/cytology , Bone Marrow Cells/cytology , Cells, Cultured , Humans , Lymphocytes/physiology
5.
J Cell Mol Med ; 18(6): 1184-93, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24655362

ABSTRACT

Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft-versus-host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow-derived MSCs (BM-MSCs) were gamma-irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)-assay, Annexin V-staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non-irradiated BM-MSCs. Notably, irradiated BM-MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM-MSCs in vitro and thus might increase the safety of MSC-based cell products in clinical applications.


Subject(s)
Apoptosis/immunology , Bone Marrow/immunology , Cell Differentiation/immunology , Gamma Rays , Immunosuppressive Agents , Mesenchymal Stem Cells/immunology , Adult , Apoptosis/radiation effects , Autoimmune Diseases/immunology , Blotting, Western , Bone Marrow/radiation effects , Cell Differentiation/radiation effects , Cells, Cultured , Colony-Forming Units Assay , Flow Cytometry , Humans , Immunophenotyping , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Middle Aged , T-Lymphocytes , Young Adult
6.
J Diabetes Res ; 2013: 940710, 2013.
Article in English | MEDLINE | ID: mdl-23691523

ABSTRACT

Studies on human type 1 diabetes (T1D) are facilitated by the availability of animal models such as nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes, as well as a variety of genetically engineered mouse models with reduced genetic and pathogenic complexity, as compared to the spontaneous NOD model. In recent years, increasing evidence has implicated CD4(+)CD25(+) regulatory T (Treg) cells expressing the transcription factor Foxp3 in both the breakdown of self-tolerance and the restoration of immune homeostasis in T1D. In this paper, we provide an overview of currently available mouse models to study the role of Foxp3(+) Treg cells in the control of destructive ß cell autoimmunity, including a novel NOD model that allows specific and temporally controlled deletion of Foxp3(+) Treg cells.

7.
Front Immunol ; 3: 141, 2012.
Article in English | MEDLINE | ID: mdl-22679447

ABSTRACT

The role of Foxp3-expressing regulatory T (T(reg)) cells in tolerance and autoimmunity is well-established. However, although of considerable clinical interest, the role of T(reg) cells in the regulation of hematopoietic homeostasis remains poorly understood. Thus, we analysed B and T lymphopoiesis in the scurfy (Sf) mouse model of T(reg) cell deficiency. In these experiments, the near-complete block of B lymphopoiesis in the BM of adolescent Sf mice was attributed to autoimmune T cells. We could exclude a constitutive lympho-hematopoietic defect or a B cell-intrinsic function of Foxp3. Efficient B cell development in the BM early in ontogeny and pronounced extramedullary B lymphopoietic activity resulted in a peripheral pool of mature B cells in adolescent Sf mice. However, marginal zone B and B-1a cells were absent throughout ontogeny. Developmental B lymphopoietic defects largely correlated with defective thymopoiesis. Importantly, neonatal adoptive T(reg) cell therapy suppressed exacerbated production of inflammatory cytokines and restored thymopoiesis but was ineffective in recovering defective B lymphopoiesis, probably due to a failure to compensate production of stroma cell-derived IL-7 and CXCL12. Our observations on autoimmune-mediated incapacitation of the BM environment in Foxp3-deficient mice will have direct implications for the rational design of BM transplantation protocols for patients with severe genetic deficiencies in functional Foxp3(+) T(reg) cells.

8.
Rev Diabet Stud ; 7(1): 47-61, 2010.
Article in English | MEDLINE | ID: mdl-20703438

ABSTRACT

Studies employing T cell receptor transgenic T cells have convincingly shown that selective delivery of non-self model antigens to DEC-205(+) dendritic cells (DCs) in the steady-state can induce Foxp3-expressing CD4(+)CD25(+) regulatory T (Treg) cells from conventional CD4(+)CD25(-)Foxp3(-) T cells. Although of considerable clinical interest, the concept of DC-targeted de novo generation of antigen-specific Treg cells has not yet been evaluated for self-antigens and self-reactive CD4(+) T cells in the non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Here, we show in proof-of-principle experiments that targeting a mimotope peptide to the endocytic receptor DEC-205 on DCs in NOD mice induces efficient conversion of pancreatic beta-cell-reactive BDC2.5 CD4(+) T cells into long-lived Foxp3(+) Treg cells. Of note, conversion efficiency in normoglycemic and hyperglycemic mice with early diabetes onset was indistinguishable. While de novo generation of BDC2.5 Treg cells did not interfere with disease progression, anti-DEC-205-mediated targeting of whole proinsulin in prediabetic NOD mice substantially reduced the incidence of diabetes. These results suggest that promoting antigen-specific Treg cells in vivo might be a feasible approach towards cellular therapy in T1D.


Subject(s)
Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Immune Tolerance , Insulin-Secreting Cells/immunology , Animals , Antibodies/administration & dosage , Antibodies/genetics , Antibodies/immunology , Autoantigens/immunology , Diabetes Mellitus, Type 1/prevention & control , Female , Male , Mice , Mice, Inbred NOD , Recombinant Proteins/immunology
9.
J Exp Med ; 207(7): 1393-407, 2010 Jul 05.
Article in English | MEDLINE | ID: mdl-20584884

ABSTRACT

CD4(+)CD25(+) regulatory T cells (T reg cells) expressing the transcription factor Foxp3 can be induced from peripheral T cell receptor (TCR) transgenic CD4(+)CD25(-)Foxp3(-) T cells stimulated with noninflammatory dendritic cells presenting low amounts of agonist cognate antigen. However, limited evidence exists for extra-thymic T reg cell generation from non-TCR transgenic T cells in unmanipulated mice. We compared events early during agonist-driven generation of Foxp3(+) TCR transgenic T cells to polyclonal CD4(+) T cell populations in unmanipulated mice. We identified an interleukin-2- and phosphatidylinositol-3-kinase-dependent precommitted Foxp3(-) precursor to Foxp3(+) T reg cells in peripheral lymphoid organs. Transforming growth factor beta signaling played a minor role in the generation and subsequent differentiation of these T reg precursor cells.


Subject(s)
Forkhead Transcription Factors/metabolism , Lymphatic System/cytology , Lymphatic System/immunology , Stem Cells/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Cell Differentiation/genetics , Epitopes/immunology , Forkhead Transcription Factors/genetics , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , L-Selectin/metabolism , Lectins, C-Type/metabolism , Lymphocyte Subsets/cytology , Lymphocyte Subsets/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/genetics , Stem Cells/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...