Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1153-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944205

ABSTRACT

The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.


Subject(s)
Bacterial Proteins/chemistry , Databases, Genetic , Lipid Metabolism , Nitrosomonas europaea/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Nitrosomonas europaea/metabolism , Oxidative Stress , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid
2.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1160-6, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944206

ABSTRACT

SSO2064 is the first structural representative of PF01796 (DUF35), a large prokaryotic family with a wide phylogenetic distribution. The structure reveals a novel two-domain architecture comprising an N-terminal, rubredoxin-like, zinc ribbon and a C-terminal, oligonucleotide/oligosaccharide-binding (OB) fold domain. Additional N-terminal helical segments may be involved in protein-protein interactions. Domain architectures, genomic context analysis and functional evidence from certain bacterial representatives of this family suggest that these proteins form a novel fatty-acid-binding component that is involved in the biosynthesis of lipids and polyketide antibiotics and that they possibly function as acyl-CoA-binding proteins. This structure has led to a re-evaluation of the DUF35 family, which has now been split into two entries in the latest Pfam release (v.24.0).


Subject(s)
Acyl Coenzyme A/chemistry , Archaeal Proteins/chemistry , Protein Folding , Sulfolobus solfataricus/chemistry , Zinc/chemistry , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Crystallography, X-Ray , Genome, Archaeal , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Sulfolobus solfataricus/genetics , Sulfolobus solfataricus/metabolism
3.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1167-73, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944207

ABSTRACT

The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Šusing the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation.


Subject(s)
Bacterial Proteins/chemistry , Desulfitobacterium/chemistry , Metals, Heavy/chemistry , Phosphopyruvate Hydratase/chemistry , Protein Folding , Amino Acid Sequence , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Desulfitobacterium/metabolism , Metals, Heavy/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1174-81, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944208

ABSTRACT

Proteins with the DUF2063 domain constitute a new Pfam family, PF09836. The crystal structure of a member of this family, NGO1945 from Neisseria gonorrhoeae, has been determined and reveals that the N-terminal DUF2063 domain is likely to be a DNA-binding domain. In conjunction with the rest of the protein, NGO1945 is likely to be involved in transcriptional regulation, which is consistent with genomic neighborhood analysis. Of the 216 currently known proteins that contain a DUF2063 domain, the most significant sequence homologs of NGO1945 (∼40-99% sequence identity) are from various Neisseria and Haemophilus species. As these are important human pathogens, NGO1945 represents an interesting candidate for further exploration via biochemical studies and possible therapeutic intervention.


Subject(s)
Bacterial Proteins/chemistry , Gene Expression Regulation , Neisseria gonorrhoeae/chemistry , Transcription, Genetic , Amino Acid Sequence , Bacterial Proteins/genetics , Crystallography, X-Ray , Genome, Bacterial , Models, Molecular , Molecular Sequence Data , Neisseria gonorrhoeae/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary , Structural Homology, Protein
5.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1182-9, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944209

ABSTRACT

The crystal structures of BB2672 and SPO0826 were determined to resolutions of 1.7 and 2.1 Šby single-wavelength anomalous dispersion and multiple-wavelength anomalous dispersion, respectively, using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). These proteins are the first structural representatives of the PF06684 (DUF1185) Pfam family. Structural analysis revealed that both structures adopt a variant of the Bacillus chorismate mutase fold (BCM). The biological unit of both proteins is a hexamer and analysis of homologs indicates that the oligomer interface residues are highly conserved. The conformation of the critical regions for oligomerization appears to be dependent on pH or salt concentration, suggesting that this protein might be subject to environmental regulation. Structural similarities to BCM and genome-context analysis suggest a function in amino-acid synthesis.


Subject(s)
Amino Acids/metabolism , Bordetella bronchiseptica/enzymology , Chorismate Mutase/chemistry , Protein Folding , Rhodobacteraceae/enzymology , Amino Acid Sequence , Bacillus/enzymology , Chorismate Mutase/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Structural Homology, Protein
6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1198-204, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944211

ABSTRACT

The crystal structure of Jann_2411 from Jannaschia sp. strain CCS1, a member of the Pfam PF07336 family classified as a domain of unknown function (DUF1470), was solved to a resolution of 1.45 Šby multiple-wavelength anomalous dispersion (MAD). This protein is the first structural representative of the DUF1470 Pfam family. Structural analysis revealed a two-domain organization, with the N-terminal domain presenting a new fold called the ABATE domain that may bind an as yet unknown ligand. The C-terminal domain forms a treble-clef zinc finger that is likely to be involved in DNA binding. Analysis of the Jann_2411 protein and the broader ABATE-domain family suggests a role as stress-induced transcriptional regulators.


Subject(s)
Bacterial Proteins/chemistry , Rhodobacteraceae/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , Zinc Fingers
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1205-10, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944212

ABSTRACT

The structure of LP2179, a member of the PF08866 (DUF1831) family, suggests a novel α+ß fold comprising two ß-sheets packed against a single helix. A remote structural similarity to two other uncharacterized protein families specific to the Bacillus genus (PF08868 and PF08968), as well as to prokaryotic S-adenosylmethionine decarboxylases, is consistent with a role in amino-acid metabolism. Genomic neighborhood analysis of LP2179 supports this functional assignment, which might also then be extended to PF08868 and PF08968.


Subject(s)
Amino Acids/metabolism , Bacterial Proteins/chemistry , Lactobacillus plantarum/chemistry , Protein Folding , Amino Acid Sequence , Bacterial Proteins/metabolism , Crystallography, X-Ray , Lactobacillus plantarum/metabolism , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1211-7, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944213

ABSTRACT

The crystal structure of PA1994 from Pseudomonas aeruginosa, a member of the Pfam PF06475 family classified as a domain of unknown function (DUF1089), reveals a novel fold comprising a 15-stranded ß-sheet wrapped around a single α-helix that assembles into a tight dimeric arrangement. The remote structural similarity to lipoprotein localization factors, in addition to the presence of an acidic pocket that is conserved in DUF1089 homologs, phospholipid-binding and sugar-binding proteins, indicate a role for PA1994 and the DUF1089 family in glycolipid metabolism. Genome-context analysis lends further support to the involvement of this family of proteins in glycolipid metabolism and indicates possible activation of DUF1089 homologs under conditions of bacterial cell-wall stress or host-pathogen interactions.


Subject(s)
Bacterial Proteins/chemistry , Glycolipids/metabolism , Protein Folding , Pseudomonas aeruginosa/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Genome, Bacterial , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1218-25, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944214

ABSTRACT

The crystal structures of SPO0140 and Sbal_2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress.


Subject(s)
Bacterial Proteins/chemistry , Protein Folding , Rhodobacteraceae/chemistry , Shewanella/chemistry , Signal Transduction , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Genome, Bacterial , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Rhodobacteraceae/genetics , Rhodobacteraceae/metabolism , Shewanella/genetics , Shewanella/metabolism , Structural Homology, Protein
10.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1230-6, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944216

ABSTRACT

YeaZ is involved in a protein network that is essential for bacteria. The crystal structure of YeaZ from Thermotoga maritima was determined to 2.5 Šresolution. Although this protein belongs to a family of ancient actin-like ATPases, it appears that it has lost the ability to bind ATP since it lacks some key structural features that are important for interaction with ATP. A conserved surface was identified, supporting its role in the formation of protein complexes.


Subject(s)
Bacterial Proteins/chemistry , Thermotoga maritima/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
11.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1237-44, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944217

ABSTRACT

The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Šresolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity.


Subject(s)
Bacillales/enzymology , Pyrophosphatases/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Tertiary , Structural Homology, Protein
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1245-53, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944218

ABSTRACT

The crystal structures of the proteins encoded by the YP_749275.1 and YP_001095227.1 genes from Shewanella frigidimarina and S. loihica, respectively, have been determined at 1.8 and 2.25 Šresolution, respectively. These proteins are members of a novel family of bacterial proteins that adopt the α/ß SpoIIAA-like fold found in STAS and CRAL-TRIO domains. Despite sharing 54% sequence identity, these two proteins adopt distinct conformations arising from different dispositions of their α2 and α3 helices. In the `open' conformation (YP_001095227.1), these helices are 15 Šapart, leading to the creation of a deep nonpolar cavity. In the `closed' structure (YP_749275.1), the helices partially unfold and rearrange, occluding the cavity and decreasing the solvent-exposed hydrophobic surface. These two complementary structures are reminiscent of the conformational switch in CRAL-TRIO carriers of hydrophobic compounds. It is suggested that both proteins may associate with the lipid bilayer in their `open' monomeric state by inserting their amphiphilic helices, α2 and α3, into the lipid bilayer. These bacterial proteins may function as carriers of nonpolar substances or as interfacially activated enzymes.


Subject(s)
Bacterial Proteins/chemistry , Cell Membrane/chemistry , Shewanella/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Cell Membrane/metabolism , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid , Shewanella/metabolism , Structural Homology, Protein
13.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1254-60, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944219

ABSTRACT

KPN03535 (gi|152972051) is a putative lipoprotein of unknown function that is secreted by Klebsiella pneumoniae MGH 78578. The crystal structure reveals that despite a lack of any detectable sequence similarity to known structures, it is a novel variant of the OB-fold and structurally similar to the bacterial Cpx-pathway protein NlpE, single-stranded DNA-binding (SSB) proteins and toxins. K. pneumoniae MGH 78578 forms part of the normal human skin, mouth and gut flora and is an opportunistic pathogen that is linked to about 8% of all hospital-acquired infections in the USA. This structure provides the foundation for further investigations into this divergent member of the OB-fold family.


Subject(s)
Bacterial Proteins/chemistry , Klebsiella pneumoniae/chemistry , Lipoproteins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Tertiary
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1265-73, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944221

ABSTRACT

Proteins that contain the DUF2874 domain constitute a new Pfam family PF11396. Members of this family have predominantly been identified in microbes found in the human gut and oral cavity. The crystal structure of one member of this family, BVU2987 from Bacteroides vulgatus, has been determined, revealing a ß-lactamase inhibitor protein-like structure with a tandem repeat of domains. Sequence analysis and structural comparisons reveal that BVU2987 and other DUF2874 proteins are related to ß-lactamase inhibitor protein, PepSY and SmpA_OmlA proteins and hence are likely to function as inhibitory proteins.


Subject(s)
Bacteroides/chemistry , Periplasmic Proteins/chemistry , Amino Acid Sequence , Bacteroides/metabolism , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Periplasmic Proteins/metabolism , Protein Binding , Protein Structure, Tertiary , Sequence Alignment , Structural Homology, Protein
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1274-80, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944222

ABSTRACT

The crystal structure of the Bacteroides thetaiotaomicron protein BT_3984 was determined to a resolution of 1.7 Šand was the first structure to be determined from the extensive SusD family of polysaccharide-binding proteins. SusD is an essential component of the sus operon that defines the paradigm for glycan utilization in dominant members of the human gut microbiota. Structural analysis of BT_3984 revealed an N-terminal region containing several tetratricopeptide repeats (TPRs), while the signature C-terminal region is less structured and contains extensive loop regions. Sequence and structure analysis of BT_3984 suggests the presence of binding interfaces for other proteins from the polysaccharide-utilization complex.


Subject(s)
Bacterial Proteins/chemistry , Bacteroides/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Structural Homology, Protein
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1326-34, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944229

ABSTRACT

A novel aminoacyl-tRNA synthetase that contains an iron-sulfur cluster in the tRNA anticodon-binding region and efficiently charges tRNA with tryptophan has been found in Thermotoga maritima. The crystal structure of TmTrpRS (tryptophanyl-tRNA synthetase; TrpRS; EC 6.1.1.2) reveals an iron-sulfur [4Fe-4S] cluster bound to the tRNA anticodon-binding (TAB) domain and an L-tryptophan ligand in the active site. None of the other T. maritima aminoacyl-tRNA synthetases (AARSs) contain this [4Fe-4S] cluster-binding motif (C-x22-C-x6-C-x2-C). It is speculated that the iron-sulfur cluster contributes to the stability of TmTrpRS and could play a role in the recognition of the anticodon.


Subject(s)
Iron-Sulfur Proteins/chemistry , Thermotoga maritima/enzymology , Tryptophan-tRNA Ligase/chemistry , Amino Acid Sequence , Animals , Conserved Sequence , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1347-53, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20944231

ABSTRACT

In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Šresolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006), Proteins, 65, 1046-1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein.


Subject(s)
Bacterial Proteins/chemistry , Catalytic Domain , Xanthomonas campestris/chemistry , Zinc Acetate/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Conserved Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Interaction Domains and Motifs , Sequence Alignment , Structural Homology, Protein , Xanthomonas campestris/metabolism , Zinc Acetate/metabolism
18.
J Mol Biol ; 404(3): 403-17, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20869368

ABSTRACT

Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD.


Subject(s)
Membrane Lipids/biosynthesis , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , DNA Primers , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Membrane Lipids/chemistry , Models, Molecular , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidoreductases Acting on CH-CH Group Donors/genetics , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Substrate Specificity , Thermoplasma/enzymology , Thermoplasma/genetics
19.
J Mol Biol ; 397(3): 647-63, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20122942

ABSTRACT

Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only approximately 20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively.


Subject(s)
Bacterial Proteins/chemistry , DNA Repair , DNA, Single-Stranded/chemistry , DNA/chemistry , Endodeoxyribonucleases/chemistry , Exodeoxyribonucleases/chemistry , Thermotoga maritima/enzymology , Amino Acid Sequence , Crystallography, X-Ray , DNA/genetics , DNA, Single-Stranded/genetics , Endodeoxyribonucleases/genetics , Exodeoxyribonucleases/genetics , Models, Chemical , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
20.
J Mol Biol ; 396(1): 31-46, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-19913036

ABSTRACT

Pleckstrin homology (PH) domains have been identified only in eukaryotic proteins to date. We have determined crystal structures for three members of an uncharacterized protein family (Pfam PF08000), which provide compelling evidence for the existence of PH-like domains in bacteria (PHb). The first two structures contain a single PHb domain that forms a dome-shaped, oligomeric ring with C(5) symmetry. The third structure has an additional helical hairpin attached at the C-terminus and forms a similar but much larger ring with C(12) symmetry. Thus, both molecular assemblies exhibit rare, higher-order, cyclic symmetry but preserve a similar arrangement of their PHb domains, which gives rise to a conserved hydrophilic surface at the intersection of the beta-strands of adjacent protomers that likely mediates protein-protein interactions. As a result of these structures, additional families of PHb domains were identified, suggesting that PH domains are much more widespread than originally anticipated. Thus, rather than being a eukaryotic innovation, the PH domain superfamily appears to have existed before prokaryotes and eukaryotes diverged.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/chemistry , Evolution, Molecular , Prokaryotic Cells/metabolism , Sequence Homology, Amino Acid , Amino Acid Sequence , Binding Sites , Conserved Sequence , Crystallography, X-Ray , Eukaryotic Cells , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...