Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38806165

ABSTRACT

MOTIVATION: Recent advances in spatial transcriptomics allow spatially resolved gene expression measurements with cellular or even sub-cellular resolution, directly characterizing the complex spatiotemporal gene expression landscape and cell-to-cell interactions in their native microenvironments. Due to technology limitations, most spatial transcriptomic technologies still yield incomplete expression measurements with excessive missing values. Therefore, gene imputation is critical to filling in missing data, enhancing resolution, and improving overall interpretability. However, existing methods either require additional matched single-cell RNA-seq data, which is rarely available, or ignore spatial proximity or expression similarity information. RESULTS: To address these issues, we introduce Impeller, a path-based heterogeneous graph learning method for spatial transcriptomic data imputation. Impeller has two unique characteristics distinct from existing approaches. First, it builds a heterogeneous graph with two types of edges representing spatial proximity and expression similarity. Therefore, Impeller can simultaneously model smooth gene expression changes across spatial dimensions and capture similar gene expression signatures of faraway cells from the same type. Moreover, Impeller incorporates both short- and long-range cell-to-cell interactions (e.g. via paracrine and endocrine) by stacking multiple GNN layers. We use a learnable path operator in Impeller to avoid the over-smoothing issue of the traditional Laplacian matrices. Extensive experiments on diverse datasets from three popular platforms and two species demonstrate the superiority of Impeller over various state-of-the-art imputation methods. AVAILABILITY AND IMPLEMENTATION: The code and preprocessed data used in this study are available at https://github.com/aicb-ZhangLabs/Impeller and https://zenodo.org/records/11212604.


Subject(s)
Transcriptome , Transcriptome/genetics , Algorithms , Gene Expression Profiling/methods , Humans , Software , Computational Biology/methods , Machine Learning , Single-Cell Analysis/methods
2.
BMC Neurosci ; 25(1): 24, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741048

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting 44 million people worldwide, leading to cognitive decline, memory loss, and significant impairment in daily functioning. The recent single-cell sequencing technology has revolutionized genetic and genomic resolution by enabling scientists to explore the diversity of gene expression patterns at the finest resolution. Most existing studies have solely focused on molecular perturbations within each cell, but cells live in microenvironments rather than in isolated entities. Here, we leveraged the large-scale and publicly available single-nucleus RNA sequencing in the human prefrontal cortex to investigate cell-to-cell communication in healthy brains and their perturbations in AD. We uniformly processed the snRNA-seq with strict QCs and labeled canonical cell types consistent with the definitions from the BRAIN Initiative Cell Census Network. From ligand and receptor gene expression, we built a high-confidence cell-to-cell communication network to investigate signaling differences between AD and healthy brains. RESULTS: Specifically, we first performed broad communication pattern analyses to highlight that biologically related cell types in normal brains rely on largely overlapping signaling networks and that the AD brain exhibits the irregular inter-mixing of cell types and signaling pathways. Secondly, we performed a more focused cell-type-centric analysis and found that excitatory neurons in AD have significantly increased their communications to inhibitory neurons, while inhibitory neurons and other non-neuronal cells globally decreased theirs to all cells. Then, we delved deeper with a signaling-centric view, showing that canonical signaling pathways CSF, TGFß, and CX3C are significantly dysregulated in their signaling to the cell type microglia/PVM and from endothelial to neuronal cells for the WNT pathway. Finally, after extracting 23 known AD risk genes, our intracellular communication analysis revealed a strong connection of extracellular ligand genes APP, APOE, and PSEN1 to intracellular AD risk genes TREM2, ABCA1, and APP in the communication from astrocytes and microglia to neurons. CONCLUSIONS: In summary, with the novel advances in single-cell sequencing technologies, we show that cellular signaling is regulated in a cell-type-specific manner and that improper regulation of extracellular signaling genes is linked to intracellular risk genes, giving the mechanistic intra- and inter-cellular picture of AD.


Subject(s)
Alzheimer Disease , Cell Communication , Single-Cell Analysis , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Cell Communication/physiology , Single-Cell Analysis/methods , Brain/metabolism , Brain/pathology , Prefrontal Cortex/metabolism , Neurons/metabolism , Signal Transduction/physiology , Signal Transduction/genetics
3.
Bioinform Adv ; 3(1): vbad096, 2023.
Article in English | MEDLINE | ID: mdl-38952748

ABSTRACT

Motivation: Recent initiatives for federal grant transparency allow direct knowledge extraction from large volumes of grant texts, serving as a powerful alternative to traditional surveys. However, its computational modeling is challenging as grants are usually multifaceted with constantly evolving topics. Results: We propose Turtling, a time-aware neural topic model with three unique characteristics. First, Turtling employs pretrained biomedical word embedding to extract research topics. Second, it leverages a probabilistic time-series model to allow smooth and coherent topic evolution. Lastly, Turtling leverages additional topic diversity loss and funding institute classification loss to improve topic quality and facilitate funding institute prediction. We apply Turtling on publicly available NIH grant text and show that it significantly outperforms other methods on topic quality metrics. We also demonstrate that Turtling can provide insights into research topic evolution by detecting topic trends across decades. In summary, Turtling may be a valuable tool for grant text analysis. Availability and implementation: Turtling is freely available as an open-source software at https://github.com/aicb-ZhangLabs/Turtling.

SELECTION OF CITATIONS
SEARCH DETAIL
...