Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 221(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38095631

ABSTRACT

Toll-like receptors 7 (TLR7) and 8 (TLR8) each sense single-stranded RNA (ssRNA), but their activation results in different immune activation profiles. Attempts to selectively target either TLR7 or TLR8 have been hindered by their high degree of homology. However, recent studies revealed that TLR7 and TLR8 bind different ligands resulting from the processing of ssRNA by endolysosomal RNases. We demonstrate that by introducing precise 2' sugar-modified bases into oligoribonucleotides (ORNs) containing known TLR7 and TLR8 binding motifs, we could prevent RNase-mediated degradation into the monomeric uridine required for TLR8 activation while preserving TLR7 activation. Furthermore, a novel, optimized protocol for CRISPR-Cas9 knockout in primary human plasmacytoid dendritic cells showed that TLR7 activation is dependent on RNase processing of ORNs and revealed a previously undescribed role for RNase 6 in degrading ORNs into TLR ligands. Finally, 2' sugar-modified ORNs demonstrated robust innate immune activation in mice. Altogether, we identified a strategy for creating tunable TLR7-selective agonists.


Subject(s)
Ribonucleases , Toll-Like Receptor 7 , Humans , Mice , Animals , Toll-Like Receptor 7/genetics , Nucleotides , Toll-Like Receptor 8/genetics , Ligands , RNA , Adjuvants, Immunologic , Sugars
2.
Cancer Immunol Res ; 9(10): 1141-1157, 2021 10.
Article in English | MEDLINE | ID: mdl-34376502

ABSTRACT

The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD1-mediated, avidity-driven IL2/15 receptor stimulation to PD1+ tumor-infiltrating lymphocytes (TIL) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1-IL15m, demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1-IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1-IL15m preferentially targeted CD8+ TILs and single-cell RNA-sequencing analyses revealed that anti-mPD1-IL15m treatment induced the expansion of an exhausted CD8+ TIL cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1-IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1-IL15m on primary human TILs from patients with cancer was also evaluated. Anti-hPD1-IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, our findings showed that anti-PD1-IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD1+ TILs.See related Spotlight by Felices and Miller, p. 1110.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/therapy , Immunotherapy , Interleukin-15/therapeutic use , Melanoma, Experimental/therapy , Animals , Cell Line, Tumor , Colonic Neoplasms/immunology , Disease Models, Animal , Humans , Interleukin-15/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma, Experimental/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Protein Engineering , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use
3.
PLoS Genet ; 15(12): e1008528, 2019 12.
Article in English | MEDLINE | ID: mdl-31869344

ABSTRACT

Asthma is a chronic inflammatory disease of the airways with contributions from genes, environmental exposures, and their interactions. While genome-wide association studies (GWAS) in humans have identified ~200 susceptibility loci, the genetic factors that modulate risk of asthma through gene-environment (GxE) interactions remain poorly understood. Using the Hybrid Mouse Diversity Panel (HMDP), we sought to identify the genetic determinants of airway hyperreactivity (AHR) in response to diesel exhaust particles (DEP), a model traffic-related air pollutant. As measured by invasive plethysmography, AHR under control and DEP-exposed conditions varied 3-4-fold in over 100 inbred strains from the HMDP. A GWAS with linear mixed models mapped two loci significantly associated with lung resistance under control exposure to chromosomes 2 (p = 3.0x10-6) and 19 (p = 5.6x10-7). The chromosome 19 locus harbors Il33 and is syntenic to asthma association signals observed at the IL33 locus in humans. A GxE GWAS for post-DEP exposure lung resistance identified a significantly associated locus on chromosome 3 (p = 2.5x10-6). Among the genes at this locus is Dapp1, an adaptor molecule expressed in immune-related and mucosal tissues, including the lung. Dapp1-deficient mice exhibited significantly lower AHR than control mice but only after DEP exposure, thus functionally validating Dapp1 as one of the genes underlying the GxE association at this locus. In summary, our results indicate that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans, as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Air Pollutants/toxicity , Asthma/genetics , Bronchial Hyperreactivity/chemically induced , Lipoproteins/genetics , Vehicle Emissions/toxicity , Animals , Asthma/chemically induced , Bronchial Hyperreactivity/genetics , Chromosome Mapping , Disease Models, Animal , Female , Gene-Environment Interaction , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Mice , Plethysmography
4.
Cancer Discov ; 8(12): 1598-1613, 2018 12.
Article in English | MEDLINE | ID: mdl-30254092

ABSTRACT

BH3 mimetic drugs, which inhibit prosurvival BCL2 family proteins, have limited single-agent activity in solid tumor models. The potential of BH3 mimetics for these cancers may depend on their ability to potentiate the apoptotic response to chemotherapy and targeted therapies. Using a novel class of potent and selective MCL1 inhibitors, we demonstrate that concurrent MEK + MCL1 inhibition induces apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer (NSCLC) models, which respond poorly to MEK inhibition alone. Susceptibility to BH3 mimetics that target either MCL1 or BCL-xL was determined by the differential binding of proapoptotic BCL2 proteins to MCL1 or BCL-xL, respectively. The efficacy of dual MEK + MCL1 blockade was augmented by prior transient exposure to BCL-xL inhibitors, which promotes the binding of proapoptotic BCL2 proteins to MCL1. This suggests a novel strategy for integrating BH3 mimetics that target different BCL2 family proteins for KRAS-mutant NSCLC. SIGNIFICANCE: Defining the molecular basis for MCL1 versus BCL-xL dependency will be essential for effective prioritization of BH3 mimetic combination therapies in the clinic. We discover a novel strategy for integrating BCL-xL and MCL1 inhibitors to drive and subsequently exploit apoptotic dependencies of KRAS-mutant NSCLCs treated with MEK inhibitors.See related commentary by Leber et al., p. 1511.This article is highlighted in the In This Issue feature, p. 1494.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , A549 Cells , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzamides/pharmacology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice, Knockout , Mice, Nude , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
5.
J Allergy Clin Immunol ; 139(5): 1468-1477.e2, 2017 May.
Article in English | MEDLINE | ID: mdl-27717665

ABSTRACT

BACKGROUND: Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. OBJECTIVE: In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. METHODS: ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. RESULTS: We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-ß and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. CONCLUSION: These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma.


Subject(s)
Asthma/immunology , Cytokines/immunology , Lymphocytes/immunology , Animals , Bronchoalveolar Lavage Fluid/immunology , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Humans , Immunity, Innate , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic
6.
Immunity ; 42(3): 538-51, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25769613

ABSTRACT

Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis.


Subject(s)
Asthma/immunology , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Protein/immunology , Lymphocytes/immunology , Animals , Asthma/genetics , Asthma/pathology , Female , Gene Expression Regulation , Homeostasis , Humans , Immunity, Innate , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-33 , Interleukin-5/genetics , Interleukin-5/immunology , Interleukins/genetics , Interleukins/immunology , Lymphocytes/pathology , Mice, Transgenic , Respiratory System/immunology , Respiratory System/pathology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , Signal Transduction
7.
FEBS J ; 279(22): 4121-30, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22971132

ABSTRACT

Nuclear factor erythroid-derived 2-related factor 1 (Nrf1) regulates cellular stress response genes, and has also been suggested to play a role in other cellular processes. We previously demonstrated that hepatocyte-specific deletion of Nrf1 in mice resulted in spontaneous apoptosis, inflammation, and development of liver tumors. Here, we showed that both fibroblasts derived from Nrf1 null mouse embryos and fibroblasts expressing a conditional Nrf1 allele showed increased micronuclei and formation of abnormal nuclei. Lentiviral shRNA-mediated knockdown of Nrf1 in SAOS-2 cells also resulted in increased micronuclei, abnormal mitosis and multi-nucleated cells. Metaphase analyses showed increased aneuploidy in Nrf1(-/-) embryonic fibroblasts. Nuclear defects in Nrf1-deficient cells were associated with decreased expression of various genes encoding kinetochore and mitotic checkpoint proteins. Our findings suggest that Nrf1 may play a role in maintaining genomic integrity, and that Nrf1 dysregulation may induce tumorigenesis.


Subject(s)
Cell Nucleus/pathology , Colonic Neoplasms/pathology , Fibroblasts/pathology , Genomic Instability , Micronuclei, Chromosome-Defective , NF-E2 Transcription Factor, p45 Subunit/physiology , NF-E2-Related Factor 1/physiology , Osteosarcoma/pathology , Aneuploidy , Animals , Apoptosis , Blotting, Western , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Nucleus/genetics , Cell Proliferation , Cells, Cultured , Colonic Neoplasms/genetics , Fibroblasts/metabolism , Humans , Kinetochores/metabolism , Mice , Mice, Knockout , NF-E2 Transcription Factor, p45 Subunit/antagonists & inhibitors , NF-E2 Transcription Factor, p45 Subunit/genetics , NF-E2-Related Factor 1/antagonists & inhibitors , NF-E2-Related Factor 1/genetics , Osteosarcoma/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...