Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Audiol Neurootol ; 25(5): 263-275, 2020.
Article in English | MEDLINE | ID: mdl-32268333

ABSTRACT

BACKGROUND: The bone conduction implant (BCI) is an active transcutaneous bone conduction device where the transducer has direct contact to the bone, and the skin is intact. Sixteen patients have been implanted with the BCI with a planned follow-up of 5 years. This study reports on hearing, quality of life, and objective measures up to 36 months of follow-up in 10 patients. METHOD: Repeated measures were performed at fitting and after 1, 3, 6, 12, and 36 months including sound field warble tone thresholds, speech recognition thresholds in quiet, speech recognition score in noise, and speech-to-noise thresholds for 50% correct words with adaptive noise. Three quality of life questionnaires were used to capture the benefit from the intervention, appreciation from different listening situations, and the ability to interact with other people when using the BCI. The results were compared to the unaided situation and a Ponto Pro Power on a soft band. The implant functionality was measured by nasal sound pressure, and the retention force from the audio processor against the skin was measured using a specially designed audio processor and a force gauge. RESULTS: Audiometry and quality of life questionnaires using the BCI or the Ponto Pro Power on a soft band were significantly improved compared to the unaided situation and the results were statistically supported. There was generally no significant difference between the two devices. The nasal sound pressure remained stable over the study period and the force on the skin from the audio processor was 0.71 ± 0.22 N (mean ± 1 SD). CONCLUSION: The BCI improves the hearing ability for tones and speech perception in quiet and in noise for the indicated patients. The results are stable over a 3-year period, and the patients subjectively report a beneficial experience from using the BCI. The transducer performance and contact to the bone is unchanged over time, and the skin area under the audio processor remains without complications during the 3-year follow-up.


Subject(s)
Bone Conduction , Hearing Aids , Hearing Loss, Conductive/rehabilitation , Hearing Loss, Mixed Conductive-Sensorineural/rehabilitation , Hearing/physiology , Quality of Life , Speech Perception/physiology , Adolescent , Adult , Aged , Audiometry , Female , Follow-Up Studies , Hearing Loss, Conductive/physiopathology , Hearing Loss, Mixed Conductive-Sensorineural/physiopathology , Hearing Tests , Humans , Male , Middle Aged , Surveys and Questionnaires , Young Adult
2.
Int J Audiol ; 59(5): 348-359, 2020 05.
Article in English | MEDLINE | ID: mdl-31873054

ABSTRACT

Objective: The aim was to quantify the effect of the experimental active transcutaneous Bone Conduction Implant (BCI) on spatial release from masking (SRM) in subjects with bilateral or unilateral conductive and mixed hearing loss.Design: Measurements were performed in a sound booth with five loudspeakers at 0°, +/-30° and +/-150° azimuth. Target speech was presented frontally, and interfering speech from either the front (co-located) or surrounding (separated) loudspeakers. SRM was calculated as the difference between the separated and the co-located speech recognition threshold (SRT).Study Sample: Twelve patients (aged 22-76 years) unilaterally implanted with the BCI were included.Results: A positive SRM, reflecting a benefit of spatially separating interferers from target speech, existed for all subjects in unaided condition, and for nine subjects (75%) in aided condition. Aided SRM was lower compared to unaided in nine of the subjects. There was no difference in SRM between patients with bilateral and unilateral hearing loss. In aided situation, SRT improved only for patients with bilateral hearing loss.Conclusions: The BCI fitted unilaterally in patients with bilateral or unilateral conductive/mixed hearing loss seems to reduce SRM. However, data indicates that SRT is improved or maintained for patients with bilateral and unilateral hearing loss, respectively.


Subject(s)
Bone Conduction/physiology , Hearing Aids , Hearing Loss, Conductive/rehabilitation , Neural Prostheses , Perceptual Masking/physiology , Adult , Aged , Auditory Threshold , Female , Hearing Loss, Bilateral/physiopathology , Hearing Loss, Bilateral/rehabilitation , Hearing Loss, Conductive/physiopathology , Hearing Loss, Unilateral/physiopathology , Hearing Loss, Unilateral/rehabilitation , Humans , Male , Middle Aged , Speech Reception Threshold Test , Treatment Outcome , Young Adult
3.
Int J Audiol ; 58(12): 945-955, 2019 12.
Article in English | MEDLINE | ID: mdl-31710259

ABSTRACT

Objective: The objective of this study is to evaluate its safety and effectiveness of the bone conduction implant (BCI) having an implanted transducer and to review similar bone conduction devices.Design: This is a consecutive prospective case series study where the patients were evaluated after 1, 3, 6 and 12 months. Outcome measures were focussed on intraoperative and postoperative safety, the effectiveness of the device in terms of audiological performance and patient's experience.Study sample: Sixteen patients with average age of 40.2 (range 18-74) years have been included. Thirteen patients were operated in Gothenburg and three in Stockholm.Results: It was found that the procedure for installing the BCI is safe and the transmission condition was stable over the follow-up time. No serious adverse events or severe adverse device effects occurred. The hearing sensitivity, speech in noise and the self-assessment as compared with the unaided condition improved significantly with the BCI. These patients also performed similar or better than with a conventional bone conduction reference device on a softband.Conclusions: In summary, it was found that the BCI can provide a safe and effective hearing rehabilitation alternative for patients with mild-to-moderate conductive or mixed hearing impairments.


Subject(s)
Bone Conduction , Hearing Aids , Hearing Loss, Conductive/surgery , Prosthesis Implantation/methods , Adolescent , Adult , Aged , Female , Follow-Up Studies , Hearing Loss, Conductive/rehabilitation , Humans , Male , Middle Aged , Prospective Studies , Young Adult
4.
Hear Res ; 381: 107763, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31387072

ABSTRACT

Direct drive bone conduction devices (BCDs) are used to rehabilitate patients with conductive or mixed hearing loss by stimulating the skull bone directly, either with an implanted transducer (active transcutaneous BCDs), or through a skin penetrating abutment rigidly coupled to an external vibrating transducer (percutaneous BCDs). Active transcutaneous BCDs have been under development to overcome limitations of the percutaneous bone anchored hearing aid (BAHA), mainly related to the skin penetration. The attachment of a direct drive BCD to the skull bone can differ significantly between devices, and possibly influence the vibrations' transmission to the cochleae. In this study, four different attachments are considered: (A) small-sized flat surface, (B) extended flat surface, (C) bar with a screw at both ends, and (D) standard bone anchored hearing aid screw. A, B, and C represent three active transcutaneous options, while D is for percutaneous applications. The primary aim of this study was to investigate how the different transcutaneous attachments (A, B, and C) affect the transmission of vibrations to the cochleae to the ipsilateral and the contralateral side. A secondary aim was to evaluate and compare transcranial attenuation (TA, ipsilateral minus contralateral signal level) between transcutaneous (A, B, and C) and percutaneous attachments (D). Measurements were performed on four human heads, measuring cochlear promontory velocity with a LDV (laser Doppler vibrometer) and sound pressure in the ear canal (ECSP) with an inserted microphone. The stimulation signal was a swept sine between 0.1 and 10 kHz. The comparison of ipsilateral transmission between transcutaneous adaptors A, B, and C was in agreement with previous findings, confirming that: (1) Adaptor C seems to give the most effective transmission for frequencies around 6 kHz but somewhat lower in the mid frequency range, and (2) keeping a smaller contact area seems to provide advantages compared to a more extended one. The same trends were seen ipsilaterally and contralaterally. The observed TA was similar for adaptors A, B, and C at the mastoid position, ranging -10-0 dB below 500 Hz, and 10-20 dB above. A lower TA was seen above 500 Hz when using adaptor D at the parietal position.


Subject(s)
Bone Conduction , Bone-Anchored Prosthesis , Cochlea/physiopathology , Hearing Aids , Hearing Loss/rehabilitation , Mastoid/surgery , Parietal Bone/surgery , Persons With Hearing Impairments/rehabilitation , Prosthesis Implantation/instrumentation , Cadaver , Female , Hearing Loss/physiopathology , Humans , Male , Mechanotransduction, Cellular , Prosthesis Design , Vibration
5.
Med Devices (Auckl) ; 12: 193-202, 2019.
Article in English | MEDLINE | ID: mdl-31239790

ABSTRACT

Objective: Active transcutaneous bone conduction devices consist of an external audio processor and an internal implant under intact skin. During the surgical procedure, it is important to verify the functionality of the implant before the surgical wound is closed. In a clinical study with the new bone conduction implant (BCI), the functionality of the implant was tested with an electric transmission test, where the output was the nasal sound pressure (NSP) recorded in the ipsilateral nostril. The same measurement was performed in all follow-up visits to monitor the implant's functionality and transmission to bone over time. The objective of this study was to investigate the validity of the NSP method as a tool to objectively verify the implant's performance intraoperatively, as well as to follow-up the implant's performance over time. Design: Thirteen patients with the BCI were included, and the NSP measurement was part of the clinical study protocol. The implant was electrically stimulated with an amplitude-modulated signal generator using a swept sine 0.1-10 kHz. The NSP was measured with a probe tube microphone in the ipsilateral nostril. Results: The NSP during surgery was above the noise floor for most patients within the frequency interval 0.4-5 kHz, showing NSP values for expected normal transmission of a functioning implant. Inter-subject comparison showed large variability, but follow-up results showed only minor variability within each subject. Further investigation showed that the NSP was stable over time. Conclusion: The NSP method is considered applicable to verify the implant's functionality during and after surgery. Such a method is important for implantable devices, but should be simplified and clinically adapted. Large variations between subjects were found, as well as smaller variability in intra-subject comparisons. As the NSP was found to not change significantly over time, stable transmission to bone, and implant functionality, were indicated.

6.
Med Devices (Auckl) ; 12: 89-100, 2019.
Article in English | MEDLINE | ID: mdl-30881150

ABSTRACT

OBJECTIVES: The objective of this study was to develop methods for evaluating the mechanical robustness and estimating the lifetime of the novel bone conduction implant (BCI) that is used in a clinical study. The methods are intended to be applicable to any similar device. MATERIALS AND METHODS: The robustness was evaluated using tests originally developed for cochlear implants comprising a random vibration test, a shock test, a pendulum test, and an impact test. Furthermore, magnetically induced torque and demagnetization during magnetic resonance imaging at 1.5 T were investigated using a dipole electromagnet. To estimate the lifetime of the implant, a long-term age-accelerated test was performed. RESULTS: Out of all the tests, the pendulum and the impact tests had the largest effect on the electro-acoustic performance of the BCI implant, even if the change in performance was within acceptable limits (<20%). In comparison with baseline data, the lower and higher resonance peaks shifted down in frequency by 13% and 18%, respectively, and with a loss in magnitude of 1.1 and 2.0 dB, respectively, in these tests. CONCLUSION: A complete series of tests were developed, and the BCI passed all the tests; its lifetime was estimated to be at least 26 years for patients who are using the implant for 12 hours on a daily basis.

7.
Med Devices (Auckl) ; 11: 301-312, 2018.
Article in English | MEDLINE | ID: mdl-30233258

ABSTRACT

OBJECTIVE: A new prototype bone conduction (BC) transducer B250, with an emphasized low-frequency response, is evaluated in vestibular evoked myogenic potential (VEMP) investigations. The aim was to compare cervical (cVEMP) and ocular (oVEMP) responses using tone bursts at 250 and 500 Hz with BC stimulation using the B250 and the conventional B81 transducer and by using air conduction (AC) stimulation. METHODS: Three normal subjects were investigated in a pilot study. BC stimulation was applied to the mastoids in cVEMP, and both mastoid and forehead in oVEMP investigations. RESULTS: BC stimulation was found to reach VEMP thresholds at considerably lower hearing levels than in AC stimulation (30-40 dB lower oVEMP threshold at 250 Hz). Three or more cVEMP and oVEMP responses at consecutive 5 dB increasing mastoid stimulation levels were only obtained in all subjects using the B250 transducer at 250 Hz. Similar BC thresholds were obtained for both ipsilateral and contralateral mastoid stimulation. Forehead stimulation, if needed, may require a more powerful vibration output. CONCLUSION: Viable VEMP responses can be obtained at a considerably lower hearing level with BC stimulation than by AC stimulation. The cVEMP and oVEMP responses were similar when measured on one side and with the B250 attached to both ipsilateral and contralateral mastoids.

8.
Hear Res ; 361: 103-112, 2018 04.
Article in English | MEDLINE | ID: mdl-29429820

ABSTRACT

Active transcutaneous bone conduction devices, where the transducer is implanted, are used for rehabilitation of hearing impaired patients by directly stimulating the skull bone. The transducer and the way it is attached to the bone play a central role in the design of such devices. The actual effect of varying the contact to bone has not been addressed yet. The aim of this study is therefore to compare how different attachment methods of the transducer to the bone for direct stimulation affect the ear canal sound pressure and vibration transmission to the ipsilateral cochlea. Three different attachments to the bone were tested: (A) via a flat small-sized surface, (B) via a flat wide surface and (C) via two separated screws. Measurements were done on four human heads on both sides. The attachments were compared in terms of induced cochlear promontory velocity, measured by a laser Doppler vibrometer, and ear canal sound pressure, measured by a low noise microphone. A swept sine stimulus was used in the frequency range 0.1-10 kHz. On an average level, the attachment method seems to affect the transmission mainly at frequencies above 5 kHz. Furthermore, the results suggest that a smaller contact surface might perform better in terms of transmission of vibrations at mid and high frequencies. However, when considering the whole frequency range, average results from the different attachment techniques are comparable.


Subject(s)
Auditory Perception , Bone Conduction , Hearing Aids , Hearing Disorders/therapy , Persons With Hearing Impairments/rehabilitation , Transducers , Aged , Aged, 80 and over , Bone Screws , Cadaver , Cochlea/physiopathology , Ear Canal/physiopathology , Equipment Design , Female , Hearing Disorders/diagnosis , Hearing Disorders/physiopathology , Hearing Disorders/psychology , Humans , Male , Materials Testing , Mechanotransduction, Cellular , Middle Aged , Persons With Hearing Impairments/psychology , Pressure , Vibration
9.
Otol Neurotol ; 37(9): 1381-7, 2016 10.
Article in English | MEDLINE | ID: mdl-27631828

ABSTRACT

HYPOTHESIS: The transcutaneous bone conduction implant (BCI) is compared with bone-anchored hearing aids (BAHAs) under the hypothesis that the BCI can give similar rehabilitation from an audiological as well as patient-related point of view. BACKGROUND: Patients suffering from conductive and mixed hearing losses can often benefit more from rehabilitation using bone conduction devices (BCDs) rather than conventional air conduction devices. The most widely used BCD is the percutaneous BAHA, with a permanent skin-penetrating abutment. To overcome issues related to percutaneous BCDs, the trend today is to develop transcutaneous devices, with intact skin. The BCI is an active transcutaneous device currently in a clinical trial phase. A potential limitation of active transcutaneous devices is the loss of power in the induction link over the skin. To address this issue, countermeasures are taken in the design of the BCI, which is therefore expected to be as effective as percutaneous BCDs. METHODS: An early observational study with a matched-pair design was performed to compare BCI and BAHA groups of patients over several audiometric measurements, including speech audiometry and warble tones thresholds with and without the device. Additionally, questionnaires were used to assess the general health condition, benefit, and satisfaction level of patients. RESULTS: No statistically significant difference was detected in any of the audiological measurements. The outcome of patient-related measurements was slightly superior for BCI in all subscales. CONCLUSION: Results confirm the initial hypothesis of the study: the BCI seems to be capable of providing as good rehabilitation as percutaneous devices for indicated patients.


Subject(s)
Bone Conduction , Hearing Aids , Hearing Loss, Conductive/rehabilitation , Hearing Loss, Mixed Conductive-Sensorineural/rehabilitation , Adult , Aged , Audiometry , Female , Hearing , Humans , Male , Middle Aged , Suture Anchors
10.
Med Devices (Auckl) ; 8: 413-23, 2015.
Article in English | MEDLINE | ID: mdl-26604836

ABSTRACT

PURPOSE: The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated. METHODS AND MATERIALS: One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI. RESULTS: It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant. CONCLUSION: This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.

SELECTION OF CITATIONS
SEARCH DETAIL
...