Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 8(4)2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29597306

ABSTRACT

Although the research on nanogels incorporating Gd chelates for theranostic applications has grown exponentially in recent years, knowledge about their biocompatibility is limited. We compared the biocompatibility of Gd-loaded hyaluronic acid-chitosan-based nanogels (GdCA⊂CS-TPP/HA) with two chitosan concentrations (2.5 and 1.5 mg·mL-1 respectively) using SVEC4-10 murine lymph node endothelial cells. The sulforhodamine B method and released lactate dehydrogenase (LDH) activity were used as cell viability tests. Reactive oxygen species (ROS), reduced glutathione (GSH) and malondialdehyde (MDA) were measured by spectrophotometric and fluorimetric methods. Nrf-2 protein expression was evaluated by Western blot analysis and genotoxicity by alkaline comet assay. After 24 h, the cells viability was not affected by all types and doses of nanogels. The increase of ROS induced a low decrease of GSH concentration and a time-dependent raise of MDA one was produced by citric GdDOTA⊂CS-TPP/HA with a chitosan concentration of 1.5 mg·mL-1, at the highest dose applied. None of the tested nanogels induced changes in Nrf-2 protein expression. A slight but significant genotoxic effect was caused only by citric GdDOTA⊂CS-TPP/HA where CS concentration was 1.5 mg·mL-1. Our results showed a better biocompatibility with lymph node endothelial cells for Gd-loaded hyaluronic acid-chitosan based nanogels with a concentration in chitosan of 2.5 mg·mL-1.

2.
Biomacromolecules ; 18(9): 2756-2766, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28777565

ABSTRACT

To synthesize chitosan nanoparticles (CS NPs), ionic gelation is a very attractive method. It relies on the spontaneous supramolecular assembly of cationic CS with anionic compounds, which leads to nanohydrogels. To extend ionic gelation to functionalized CS, the assessment of CS degree of substitution (DSCS) is a key step. In this paper, we have developed a hyphenated strategy for functionalized CS characterization, based upon 1H, DOSY and, when relevant, 1D diffusion-filtered 19F NMR spectroscopies. For that, we have synthesized two series of water-soluble CS via amidation of CS amino groups with mPEG2000-COOH or fluorinated synthons (TFB-COOH). The aforementioned NMR techniques helped to discriminate between ungrafted and grafted synthons and finally to determine DSCS. According to DSCS values, the selection of CS-mPEG2000 or CS-TFB copolymers can be made to obtain, in the presence of hyaluronic acid (HA) and tripolyphosphate (TPP), CS-mPEG2000-TPP/HA or CS-TFB-TPP/HA nanohydrogels suitable for drug delivery.


Subject(s)
Chitosan/analysis , Hydrogels/chemical synthesis , Nanoparticles/chemistry , Animals , Cell Line , Fluorine Compounds/chemistry , Hyaluronic Acid/chemistry , Hydrogels/adverse effects , Hydrogels/chemistry , Macrophages/drug effects , Mice , Nanoparticles/adverse effects , Polyethylene Glycols/chemistry
3.
Dalton Trans ; 40(18): 4797-9, 2011 May 14.
Article in English | MEDLINE | ID: mdl-21448490

ABSTRACT

The first 3d-4f clusters built using derivatised salicylaldoximes (R-saoH(2)) describe unusual hexagonal prisms. Replacement of the paramagnetic Gd(III) ions with diamagnetic Ln(III) ions allows for a more thorough understanding of the magnetic properties, whilst replacement with Tb(III) doubles U(eff).

SELECTION OF CITATIONS
SEARCH DETAIL
...