Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 100(9): e02790, 2019 09.
Article in English | MEDLINE | ID: mdl-31228251

ABSTRACT

Environmental forces and biotic interactions, both positive and negative, structure ecological communities, but their relative roles remain obscure despite strong theory. For instance, ecologically similar species, based on the principle of limiting similarity, are expected to be most competitive and show negative interactions. Specious communities that assemble along broad environmental gradients afford the most power to test theory, but the communities often are difficult to quantify. Microbes, specifically fungal endophytes of wood, are especially suited for testing community assembly theory because they are relatively easy to sample across a comprehensive range of environmental space with clear axes of variation. Moreover, endophytes mediate key forest carbon cycle processes, and although saprophytic fungi from dead wood typically compete, endophytic fungi in living wood may enhance success through cooperative symbioses. To classify interactions within endophyte communities, we analyzed fungal DNA barcode variation across 22 woody plant species growing in woodlands near Richmond, New South Wales, Australia. We estimated the response of endophytes to the measured wood environment (i.e., 11 anatomical and chemical wood traits) and each other using latent-variable models and identified recurrent communities across wood environments using model-based classification. We used this information to evaluate whether (1) co-occurrence patterns are consistent with strong competitive exclusion, and (2) a priori classifications by trophic mode and phylum distinguish taxa that are more likely to have positive vs. negative associations under the principle of limiting similarity. Fungal endophytes were diverse (mean = 140 taxa/sample), with differences in community composition structured by wood traits. Variation in wood water content and carbon concentration were associated with especially large community shifts. Surprisingly, after accounting for wood traits, fungal species were still more than three times more likely to have positive than negative co-occurrence patterns. That is, patterns consistent with strong competitive exclusion were rare, and positive interactions among fungal endophytes were more common than expected. Confirming the frequency of positive vs. negative interactions among fungal taxa requires experimental tests, and our findings establish clear paths for further study. Evidence to date intriguingly suggests that, across a wide range of wood traits, cooperation may outweigh combat for these fungi.


Subject(s)
Endophytes , Wood , Australia , DNA, Fungal , Ecosystem , Fungi
2.
Ecology ; 97(12): 3346-3358, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27912016

ABSTRACT

Plant-soil feedback, the reciprocal relationship between a plant and its associated microbial communities, has been proposed to be an important driver of plant populations and community dynamics. While rarely considered, understanding how plant-soil feedback contributes to plant rarity may have implications for conservation and management of rare species. Wollemi pine (Wollemia nobilis) is a critically endangered species, of which fewer than 100 trees are known to exist in the wild. Seedling survival within the first year after germination and subsequent recruitment of Wollemi pine is limited in the wild. We used a plant-soil feedback approach to investigate the functional effect of species-specific differences previously observed in the microbial communities underneath adult Wollemi pine and a neighboring species, coachwood (Ceratopetalum apetalum), and also whether additional variation in microbial communities in the wild could impact seedling growth. There was no evidence for seedling growth being affected by tree species associated with soil inocula, suggesting that plant-soil feedbacks are not limiting recruitment in the natural population. However, there was evidence of fungal, but not bacterial, community variation impacting seedling growth independently of plant-soil feedbacks. Chemical (pH) and physical (porosity) soil characteristics were identified as potential drivers of the functional outcomes of these fungal communities. The empirical approach described here may provide opportunities to identify the importance of soil microbes to conservation efforts targeting other rare plant species and is also relevant to understanding the importance of soil microbes and plant-soil feedbacks for plant community dynamics more broadly.


Subject(s)
Endangered Species , Plant Roots/growth & development , Seedlings/growth & development , Soil Microbiology , Tracheophyta/growth & development , Plant Roots/microbiology , Seedlings/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...