Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Environ Monit Assess ; 195(4): 492, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36943528

ABSTRACT

Deforestation accounts for the majority of greenhouse gas emissions in developing countries. In Brazil, deforestation represents ~ 70% of the nation's greenhouse gas emissions. Among the main deforested vegetation, Cerrado (Brazilian savanna) occupies a prominent position as it is the second biggest biome in Brazil. Despite its importance, there are still few estimates of above and belowground biomass of Cerrado vegetation encompassing its structural and spatial complexity. Also, Cerrado holds a specific biodiversity that is normally undervalued and which is being lost in the fires of agricultural fronts. In this context, this study aimed to verify the relationship of the existing flora biodiversity in a cerrado stricto sensu with its aboveground biomass and carbon stocks. The possibility of a relationship between fine root mass and soil organic carbon content was also verified. The study area presented a total of 67 species and 798 trees (average: 1596 trees ha-1). The mean total aboveground biomass and carbon stocks were 77.08 Mg ha-1 and 38.54 Mg ha-1 respectively. Soil organic carbon stock (0-30 cm) was 8.51 Mg ha-1 whereas fine roots were 1.637 Mg ha-1. Total aboveground biomass presented a highly significant asymptotic relationship with biodiversity demonstrating its importance in reaching high biomass accumulation. A significant relationship between soil organic carbon content and fine root biomass was found making easier belowground biomass estimates.


Subject(s)
Forests , Greenhouse Gases , Biomass , Brazil , Soil/chemistry , Carbon/analysis , Environmental Monitoring , Biodiversity , Trees
2.
Environ Entomol ; 47(6): 1420-1430, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30445433

ABSTRACT

Tropical forests account for 7% of the earth's surface harboring more than 50% of the biodiversity on Earth. Unfortunately, deforestation continues at high rates with negative consequences for biodiversity. With the decrease of natural habitats, biodiversity maintenance in areas degraded by human activity is a challenge. In order to maintain biodiversity, both in natural areas and in agro-ecosystems, knowledge of the structure and function of organism communities is important. Dung beetles (Scarabaeidae) play an important role in tropical ecosystems by recycling organic matter. Dung beetle diversity was appraised during 1 yr in an Atlantic forest remnant and five anthropic adjacent vegetation systems. In total, 1,047 individuals were sampled representing 17 species. Scybalocanthon nigriceps was the most abundant (523 individuals: 50%) almost exclusively in forest areas. Ataenius aff. platensis (48 individuals: 4.6%), and Canthon aff. luctuosus (109 individuals: 10.4%) were observed in all areas, while Canthon virens chalybaeus (111 individuals: 10.6%) was limited to anthropic areas. Dung beetle diversity was affected by microclimatic conditions concerning precipitation and air temperature. The greatest abundance and richness was found in the rainy season with a striking reduction in the dry period. The pasture sustained the lowest species diversity and abundance. However, there are clear signs that tree structure and microclimatic conditions similar to forests, as found in agroforestry, can help preserve biodiversity by creating a propitious habitat for native species. This is especially important in the forest regions of the Neotropics where dung beetles exhibit their greatest diversity. As dung beetles greatly depend on mammal feces and carrion, it is suggested that future studies incorporate the occurrence of mammals in investigations of the effects of landscape structure on scarab diversity.


Subject(s)
Biodiversity , Coleoptera , Microclimate , Animals , Brazil
3.
Environ Entomol ; 46(6): 1254-1263, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29126184

ABSTRACT

Land use changes and forest fragmentation result in biodiversity loss and displacement, with insects among the most affected groups. Among these, bark beetles (Curculionidae: Scolytinae) occupy a prominent position due to their close ties to food resources, i.e., trees, and importance as primary decomposers in forest ecosystems. Therefore, our study aimed to document scolytine biodiversity associated with landscape components that vary based on their physical or botanical composition. Bark beetle diversity was sampled monthly for 12 mo in an Atlantic forest remnant and five adjacent vegetation plots (mixed Agroforestry System-AFS, of native trees and fruit species; AFS of rubber trees and coffee plants; coffee monoculture; rubber monoculture; and pasture). In total, 1,833 individuals were sampled from 38 species of which 24 (63%) were detected in very low abundance. The remaining 14 species were more abundant and widespread almost in all areas. Hypothenemus hampei (Westwood), Premnobius cavipennis (Eichhoff), Hypothenemus sp1., and Xyleborus volvulus (Fabricius) were the most abundant. The greatest abundance and richness of bark beetles were found in the dry and cold season. The varied microclimatic conditions of the vegetation plots greatly affected the diversity of the Scolytinae. Solar radiation presented a significant negative effect on abundance in almost all the studied areas. The greatest scolytine diversity was found in anthropic areas with tree canopy structure. Open areas (pasture and coffee monocrop) had a lower species diversity. Similarly, a lower abundance and species richness were found for the Atlantic forest remnant.


Subject(s)
Biodiversity , Forestry , Forests , Microclimate , Weevils , Animals , Brazil , Conservation of Natural Resources , Weevils/classification
4.
Ciênc. rural ; 40(5): 1009-1016, maio 2010. graf, tab
Article in English | LILACS | ID: lil-552149

ABSTRACT

Predicting crop growth and yield with precision are one of the main concerns of the agricultural science. For these purpose mechanistic models of crop growth have been developed and tested worldwide. The feasibility of an expolinear model for crop growth was evaluated on predicting growth modification on soybean (Glycine max L. Merrill) of determined and undetermined growth cultivars, submitted to water restrictions imposed on different phenological stages. An experiment was carried out in Azul/Argentina and in Viçosa/Brazil during the growing seasons (1997/1998, 1998/1999 and 2002/2003). The expolinear model was adjusted to the dry-matter data obtained from each treatment. The model showed sensibility of Rm (maximum relative growth rate of the culture - g g-1 day-1) to variation in air temperature; of Cm (maximum growth rate of the culture - g m-2 day-1) to solar radiation and of Tb (lost time -day) to water stress. Cm values were higher without water restriction presenting, in both countries, a direct correlation with solar radiation. Without water restrictions, Rm values were lower when the average air temperature during the cycle was lower. It was observed that under water stress the culture had a bias to present higher Rm values. Tb was lower in the irrigated treatments than in those with water deficits. The analysis of the outputs clearly shows the feasibility of the expolinear model to explain the differential growth rates of soybean as a consequence of climatic conditions.


Prever o crescimento e a produtividade das culturas com precisão é uma das principais preocupações das ciências agrícolas. Com esse propósito, modelos mecanísticos de crescimento de culturas têm sido desenvolvidos e testados. A adequação do modelo expolinear de crescimento de culturas foi avaliada para prever as modificações de crescimento de cultivares de soja (Glycine max L. Merrill) de crescimento determinado e indeterminado, submetidas a déficit hídrico em diferentes estádios fenológicos. Um experimento foi conduzido em Azul/Argentina e outro em Viçosa/Brasil durante as estações de cultivo (1997/1998, 1998/1999 e 2002/2003). O modelo expolinear foi ajustado aos dados de fitomassa seca obtidos de cada tratamento. O modelo apresentou sensibilidade do parâmetro Rm (taxa máxima de crescimento relativo da cultura - g g-1 day-1) à variação na temperatura do ar; do parâmetro Cm (taxa máxima de crescimento da cultura - g m-2 day-1) à radiação solar; e do parâmetro Tb (perda em tempo - dias) ao estresse hídrico. Os valores de Cm foram maiores sem restrições hídricas, apresentando, em ambos os países, uma correlação direta com a radiação solar. Sem restrições hídricas, os valores de Rm foram menores quando a temperatura média do ar durante o ciclo foi menor. Sob estresse hídrico, a cultura mostrou uma tendência a apresentar valores de Rm maiores. Os valores de Tb foram menores nos tratamentos irrigados e maiores nos tratamentos com deficiência hídrica. A análise dos resultados mostrou claramente a capacidade do modelo expolinear para simular as diferentes taxas de crescimento da cultura da soja como uma consequência das condições climáticas.

SELECTION OF CITATIONS
SEARCH DETAIL
...