Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35057400

ABSTRACT

The development of aligned nanofibers as useful scaffolds for tissue engineering is an actively sought-for research objective. Here, we propose a novel improvement of an existing self-assembly-based nanofabrication technique (ASB-SANS). This improvement, which we termed Directional ASB-SANS, allows one to produce cm2-large domains of highly aligned poly(lactic-co-glycolic acid) (PLGA) nanofibers in a rapid, inexpensive, and easy way. The so-grown aligned PLGA nanofibers exhibited remarkable adhesion to different substrates (glass, polyimide, and Si/SiOx), even when immersed in PBS solution and kept at physiological temperature (37 °C) for up to two weeks. Finally, the Directional ASB-SANS technique allowed us to grow PLGA fibers also on highly heterogeneous substrates such as polyimide-based, gold-coated flexible electrodes. These results suggest the viability of Directional ASB-SANS method for realizing biocompatible/bioresorbable, nanostructured coatings, potentially suitable for neural interface systems.

2.
Adv Healthc Mater ; 8(4): e1801425, 2019 02.
Article in English | MEDLINE | ID: mdl-30694616

ABSTRACT

Understanding the foreign body response (FBR) and desiging strategies to modulate such a response represent a grand challenge for implant devices and biomaterials. Here, the development of a microfluidic platform is reported, i.e., the FBR-on-a-chip (FBROC) for modeling the cascade of events during immune cell response to implants. The platform models the native implant microenvironment where the implants are interfaced directly with surrounding tissues, as well as vasculature with circulating immune cells. The study demonstrates that the release of cytokines such as monocyte chemoattractant protein 1 (MCP-1) from the extracellular matrix (ECM)-like hydrogels in the bottom tissue chamber induces trans-endothelial migration of circulating monocytes in the vascular channel toward the hydrogels, thus mimicking implant-induced inflammation. Data using patient-derived peripheral blood mononuclear cells further reveal inter-patient differences in FBR, highlighting the potential of this platform for monitoring FBR in a personalized manner. The prototype FBROC platform provides an enabling strategy to interrogate FBR on various implants, including biomaterials and engineered tissue constructs, in a physiologically relevant and individual-specific manner.


Subject(s)
Foreign-Body Reaction , Human Umbilical Vein Endothelial Cells , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Monocytes , Transendothelial and Transepithelial Migration/immunology , Foreign-Body Reaction/immunology , Foreign-Body Reaction/pathology , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hydrogels/chemistry , Monocytes/immunology , Monocytes/pathology , THP-1 Cells
3.
Sci Rep ; 8(1): 502, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323135

ABSTRACT

In the last decade, the use of flexible biosensors for neuroprosthetic and translational applications has widely increased. Among them, the polyimide (PI)-based thin-film electrodes got a large popularity. However, the usability of these devices is still hampered by a non-optimal tissue-device interface that usually compromises the long-term quality of neural signals. Advanced strategies able to improve the surface properties of these devices have been developed in the recent past. Unfortunately, most of them are not easy to be developed and combined with micro-fabrication processes, and require long-term efforts to be testable with human subjects. Here we show the results of the design and in vitro testing of an easy-to-implement and potentially interesting coating approach for thin-film electrodes. In particular, two biocompatible coatings were obtained via covalent conjugation of a laminin-derived peptide, CAS-IKVAV-S (IKV), with polyimide sheets that we previously functionalized with vinyl- and amino- groups (PI_v and PI_a respectively). Both the engineered coatings (PI_v+IKV and PI_a+IKV) showed morphological and chemical properties able to support neuronal adhesion, neurite sprouting, and peripheral glial cell viability while reducing the fibroblasts contamination of the substrate. In particular, PI_v+IKV showed promising results that encourage further in vivo investigation and pave the way for a new generation of peptide-coated thin-film electrodes.


Subject(s)
Coated Materials, Biocompatible/chemistry , Peptides/chemistry , Amino Acid Sequence , Animals , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Electrodes , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Laminin/chemistry , Materials Testing , Neurites/physiology , PC12 Cells , Rats , Rats, Wistar , Resins, Synthetic/chemistry , Schwann Cells/cytology , Schwann Cells/metabolism , Surface Properties
4.
Anal Chem ; 88(20): 10019-10027, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27617489

ABSTRACT

Continual monitoring of secreted biomarkers from organ-on-a-chip models is desired to understand their responses to drug exposure in a noninvasive manner. To achieve this goal, analytical methods capable of monitoring trace amounts of secreted biomarkers are of particular interest. However, a majority of existing biosensing techniques suffer from limited sensitivity, selectivity, stability, and require large working volumes, especially when cell culture medium is involved, which usually contains a plethora of nonspecific binding proteins and interfering compounds. Hence, novel analytical platforms are needed to provide noninvasive, accurate information on the status of organoids at low working volumes. Here, we report a novel microfluidic aptamer-based electrochemical biosensing platform for monitoring damage to cardiac organoids. The system is scalable, low-cost, and compatible with microfluidic platforms easing its integration with microfluidic bioreactors. To create the creatine kinase (CK)-MB biosensor, the microelectrode was functionalized with aptamers that are specific to CK-MB biomarker secreted from a damaged cardiac tissue. Compared to antibody-based sensors, the proposed aptamer-based system was highly sensitive, selective, and stable. The performance of the sensors was assessed using a heart-on-a-chip system constructed from human embryonic stem cell-derived cardiomyocytes following exposure to a cardiotoxic drug, doxorubicin. The aptamer-based biosensor was capable of measuring trace amounts of CK-MB secreted by the cardiac organoids upon drug treatments in a dose-dependent manner, which was in agreement with the beating behavior and cell viability analyses. We believe that, our microfluidic electrochemical biosensor using aptamer-based capture mechanism will find widespread applications in integration with organ-on-a-chip platforms for in situ detection of biomarkers at low abundance and high sensitivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...