Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 50(37): 13020-13030, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34581359

ABSTRACT

[RuCp*(1,3,5-R3C6H3)]2 {Cp* = η5-pentamethylcyclopentadienyl, R = Me, Et} have previously been found to be moderately air stable, yet highly reducing, with estimated D+/0.5D2 (where D2 and D+ represent the dimer and the corresponding monomeric cation, respectively) redox potentials of ca. -2.0 V vs. FeCp2+/0. These properties have led to their use as n-dopants for organic semiconductors. Use of arenes substituted with π-electron donors is anticipated to lead to even more strongly reducing dimers. [RuCp*(1-(Me2N)-3,5-Me2C6H3)]+PF6- and [RuCp*(1,4-(Me2N)2C6H4)]+PF6- have been synthesized and electrochemically and crystallographically characterized; both exhibit D+/D potentials slightly more cathodic than [RuCp*(1,3,5-R3C6H3)]+. Reduction of [RuCp*(1,4-(Me2N)2C6H4)]+PF6- using silica-supported sodium-potassium alloy leads to a mixture of isomers of [RuCp*(1,4-(Me2N)2C6H4)]2, two of which have been crystallographically characterized. One of these isomers has a similar molecular structure to [RuCp*(1,3,5-Et3C6H3)]2; the central C-C bond is exo,exo, i.e., on the opposite face of both six-membered rings from the metals. A D+/0.5D2 potential of -2.4 V is estimated for this exo,exo dimer, more reducing than that of [RuCp*(1,3,5-R3C6H3)]2 (-2.0 V). This isomer reacts much more rapidly with both air and electron acceptors than [RuCp*(1,3,5-R3C6H3)]2 due to a much more cathodic D2˙+/D2 potential. The other isomer to be crystallographically characterized, along with a third isomer, are both dimerized in an exo,endo fashion, representing the first examples of such dimers. Density functional theory calculations and reactivity studies indicate that the central bonds of these two isomers are weaker than those of the exo,exo isomer, or of [RuCp*(1,3,5-R3C6H3)]2, leading to estimated D+/0.5D2 potentials of -2.5 and -2.6 V vs. FeCp2+/0. At the same time the D2˙+/D2 potentials for the exo,endo dimers are anodically shifted relative to those of [RuCp*(1,3,5-R3C6H3)]2, resulting in much greater air stability than for the exo,exo isomer.

2.
Inorg Chem ; 59(12): 8070-8080, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32478526

ABSTRACT

Crystallization from solutions containing 2,2'-[naphthalene-1,8:4,5-bis(dicarboximide)-N,N'-diyl]-bis(ethylammonium) diiodide ((NDIC2)I2) and PbI2 has been investigated. Eight different materials are obtained, either by variation of crystallization conditions or by subsequent thermal or solvent-induced transformations. Crystal structures have been determined for five materials. [(NDIC2)2Pb5I14(DMF)2]·4DMF (DMF = N,N-dimethylformamide) (1), [(NDIC2)Pb4I10]·4DMF (3), [(NDIC2)Pb2I6]·4NMP (NMP = N-methyl-2-pyrrolidone) (4), and [(NDIC2)Pb2I6]·2H2O (5) form 1-dimensional (1D) chains consisting of PbI6 (and, in the case of 1, PbI5(DMF)) octahedra, either solely face-sharing or a mixture of face-sharing and vertex-sharing. The structure of [(NDIC2)3Pb5I16]·6NMP (2) contains 0D clusters; these consist of three PbI6 octahedra and two unusually coordinated lead centers that exhibit three relatively short Pb-I bonds, two very long Pb-I contacts, and η2-coordination of an aromatic ring of NDIC2 to the lead. Close contacts between iodide ions and the imide rings of NDIC2 in four of the structures suggest that an iodide-to-NDIC2 charge-transfer interaction may be responsible for the observed red coloration of the materials. The optical and electrical properties of 1 have been studied; its onset of absorption is at 2.0 eV, and its conductivity was measured as 5.4 × 10-5 ± 1.1 × 10-5 S m-1.

3.
RSC Adv ; 10(29): 16861-16874, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-35496923

ABSTRACT

Crystal structures of six benzaldehyde derivatives (1-6) have been determined and their supramolecular networks were established by an X-ray crystallographic study. The study has shown that the compounds are linked by various intermolecular interactions such as weak C-H⋯O hydrogen bonding, and C-H⋯π, π-π and halogen bonding interactions which consolidate and strengthen the formation of these molecular assemblies. The carbonyl group generates diverse synthons in 1-6via intermolecular C-H⋯O hydrogen bonds. An interplay of C-H⋯O hydrogen bonds, and C-H⋯π and π-π stacking interactions facilitates the formation of multi-dimensional supramolecular networks. Crystal packings in 4 and 5 are further generated by type I halogen⋯halogen bonding interactions. The differences in crystal packing are represented by variation of substitution positions in the compounds. Structure 3 is isomorphous with 4 but there are subtle differences in their crystal packing. The nature of intermolecular contacts in the structures has been studied through the Hirshfeld surfaces and two-dimensional fingerprint plots which serve as a comparison in constructing different supramolecular networks. The intermolecular interaction energies are quantified utilizing theorectical calculations for the title compounds and various analogous structures retrieved from the Cambridge Structural Database (CSD). Also intermolecular interactions for the molecular pairs are exctrated from respective crystal structures. Essentially, there are some invariant and variable intermolecular contacts realized between different groups in all six structures. The ab initio DFT total lattice energy (E Tot) calculations showed a direct correlation with thermal strengths of the title compounds.

4.
Acta Crystallogr C Struct Chem ; 75(Pt 11): 1554-1561, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31686667

ABSTRACT

The three organic two-photon-absorbing cycloalkanone chromophores 2,4-bis[4-(diethylamino)benzylidene]cyclobutanone, C26H32N2O (I), 2,5-bis[4-(diethylamino)benzylidene]cyclopentanone, C27H34N2O (II), and 2,6-bis[4-(diethylamino)benzylidene]cyclohexanone, C28H36N2O (III), were obtained by a reaction between 4-(diethylamino)benzaldehyde and the corresponding cycloalkanone and were characterized by single-crystal X-ray diffraction studies, as well as density functional theory (DFT) quantum-chemical calculations. Molecules of this series have three main fragments, i.e. central acceptor (A) and two terminal donors (D1 and D2) and represent examples of the D1-π-A-π-D2 molecular design. All three compounds crystallize with two crystallographically independent molecules in the asymmetric unit (A and B) and are distinguished by the conformations of both the molecular Et2N-C6H4-C=C-C(=O)-C=C-C6H4-NEt2 backbone (arcuate or linear) and the terminal diethylamino substituents (syn- or antiperiplanar to the plane of the molecule). The central four- and five-membered rings in I and II are almost planar, and the six-membered ring in III adopts a sofa conformation. In the crystals of I-III, the two independent molecules A and B form hydrogen-bonded [A...B] dimers via intermolecular C-H...O hydrogen bonds. Furthermore, the [A...B] dimers in I are bound by intermolecular C-H...O hydrogen bonds into two-tier puckered layers, whereas in the crystals of II and III, the [A...B] dimers are stacked along the c and a axes, respectively. Taking into account the decreasing steric strain upon expanding the central ring, compound I might be more efficient as a two-photon absorption chromophore than compounds II and III, which corresponds to the results of spectroscopic studies.

5.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 6): 826-829, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31391975

ABSTRACT

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl-butyramide were grown from water-aceto-nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014 ▸). Cryst. Growth Des. 14, 3360-3369]. While the previously reported racemic and enanti-opure forms of the title compound adopt very similar supra-molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N-H⋯O hydrogen bond that links mol-ecules into chains along the c-axis direction with an anti-parallel (centrosymmetric) packing in the crystal. Hirshfeld mol-ecular surface analysis was employed to compare the inter-molecular inter-actions in the polymorphs of the title compound.

6.
Acta Crystallogr C Struct Chem ; 75(Pt 8): 1175-1181, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31380801

ABSTRACT

The synthesis, crystal structure studies and solvatochromic behavior of 2-{(2E,4E)-5-[4-(dimethylamino)phenyl]penta-2,4-dien-1-ylidene}malononitrile, C16H15N3 (DCV[3]), and 2-{(2E,4E,6E)-7-[4-(dimethylamino)phenyl]hepta-2,4,6-trien-1-ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π-conjugated bridge. The compounds of this series have potential use as nonlinear materials with second-order effects due to their donor-acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]-DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.

7.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 8): 1195-1198, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31417791

ABSTRACT

The mol-ecule of the title compound, C18H10Br2S4, has a C-shape, with C s mol-ecular symmetry. The dihedral angle between the planes of the di-thiol and phenyl rings is 8.35 (9)°. In the crystal, mol-ecules form helical chains along [001], the shortest inter-actions being π⋯S contacts within the helices. The inter-molecular inter-actions were investigated by Hirshfeld surface analysis. Density functional theory (DFT) was used to calculate HOMO-LUMO energy levels of the title compound and its trans isomer.

SELECTION OF CITATIONS
SEARCH DETAIL
...