Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39205131

ABSTRACT

Running is the basis of many sports and has highly beneficial effects on health. To increase the understanding of running, DSPro® insoles were developed to collect running parameters during tasks. However, no validation has been carried out for running gait analysis. The aims of this study were to assess the test-retest reliability and criterion validity of running gait parameters from DSPro® insoles compared to a motion-capture system. Equipped with DSPro® insoles, a running gait analysis was performed on 30 healthy participants during overground and treadmill running using a motion-capture system. Using an intraclass correlation coefficient (ICC), the criterion validity and test-retest reliability of spatiotemporal parameters were calculated. The test-retest reliability shows moderate to excellent ICC values (ICC > 0.50) except for propulsion time during overground running at a fast speed with the motion-capture system. The criterion validity highlights a validation of running parameters regardless of speeds (ICC > 0.70). This present study validates the good criterion validity and test-retest reliability of DSPro® insoles for measuring spatiotemporal running gait parameters. Without the constraints of a 3D motion-capture system, such insoles seem to be helpful and relevant for improving the care management of active patients or following running performance in sports contexts.


Subject(s)
Gait , Running , Humans , Running/physiology , Male , Adult , Female , Gait/physiology , Reproducibility of Results , Biomechanical Phenomena/physiology , Gait Analysis/methods , Shoes , Young Adult
2.
Orthop Traumatol Surg Res ; 110(6): 103924, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38964498

ABSTRACT

BACKGROUND: A mobile polyethylene liner enables the dual mobility cup (DMC) to contribute to restoring hip joint range-of-motion, decreasing wear and increasing implant stability. However, more data is required on how liner orientation changes with hip joint movement. As a first step towards better understanding liner orientation change in vivo, this cadaver study focuses on quantifying DMC liner orientation change after different hip passive movements, using ultrasound imaging and motion analysis. HYPOTHESIS: The liner does not always go back to its initial orientation and its final orientation depends mainly on hip movement amplitude. METHODS: 3D ultrasound imaging and motion analysis were used to define liner and hip movements for four fresh post-mortem human subjects with six implanted DMC. Abduction and anteversion angles of the liner plane relative to the pelvis were measured before and after hip flexion, internal rotation, external rotation, abduction, adduction. RESULTS: Liner orientation changes were generally defined by angle variation smaller than 5°, with the liner nearly going back to its initial orientation. However, hip flexion caused liner abduction and anteversion angle variations greater than 15°. Except for hip adduction, only weak or no correlation was found between the final angle of the liner and the maximal hip joint movement amplitude. DISCUSSION: This study is the first attempt to quantify liner orientation change for implanted DMC via ultrasound imaging and constitutes a step forward in the understanding of liner orientation change and its relationship with hip joint movement. The hypothesis that the final liner abduction and anteversion angles depend mainly on hip movement amplitude was not confirmed, even if hip flexion was the movement generating the most liner orientation changes over 15°. This approach should be extended to in vivo clinical investigations, as measured liner angle variation could provide important support for the wear and stability claims made for DMC. LEVEL OF EVIDENCE: IV; cadaveric study.


Subject(s)
Arthroplasty, Replacement, Hip , Cadaver , Hip Prosthesis , Imaging, Three-Dimensional , Prosthesis Design , Range of Motion, Articular , Ultrasonography , Humans , Range of Motion, Articular/physiology , Male , Aged , Female , Aged, 80 and over , Hip Joint/diagnostic imaging , Hip Joint/physiology , Middle Aged
3.
Sci Data ; 11(1): 556, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816523

ABSTRACT

Used on clinical and sportive context, three-dimensional motion analysis is considered as the gold standard in the biomechanics field. The proposed dataset has been established on 30 asymptomatic young participants. Volunteers were asked to walk at slow, comfortable and fast speeds, and to run at comfortable and fast speeds on overground and treadmill using shoes. Three dimensional trajectories of 63 reflective markers, 3D ground reaction forces and moments were simultaneously recorded. A total of 4840 and 18159 gait cycles were measured for overground and treadmill walking, respectively. Additionally, 2931 and 18945 cycles were measured for overground and treadmill running, respectively. The dataset is presented in C3D and CSV files either in raw or pre-processed format. The aim of this dataset is to provide a complete set of data that will help for the gait characterization during clinical gait analysis and in a sportive context. This data could be used for the creation of a baseline database for clinical purposes to research activities exploring the gait and the run.


Subject(s)
Gait , Running , Walking , Humans , Running/physiology , Young Adult , Biomechanical Phenomena , Healthy Volunteers , Adult , Gait Analysis , Male , Exercise Test
4.
Sensors (Basel) ; 23(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836986

ABSTRACT

Wireless wearable insoles are interesting tools to collect gait parameters during daily life activities. However, studies have to be performed specifically for each type of insoles on a big data set to validate the measurement in ecological situations. This study aims to assess the criterion validity and test-retest reliability of gait parameters from wearable insoles compared to motion capture system. Gait of 30 healthy participants was recorded using DSPro® insoles and a motion capture system during overground and treadmill walking at three different speeds. Criterion validity and test-retest reliability of spatio-temporal parameters were estimated with an intraclass correlation coefficient (ICC). For both systems, reliability was found higher than 0.70 for all variables (p < 0.001) except for minimum toe clearance (ICC < 0.50) with motion capture system during overground walking. Regardless of speed and condition of walking, Speed, Cadence, Stride Length, Stride Time and Stance Time variables were validated (ICC > 0.90; p < 0.001). During walking on treadmill, loading time was not validated during slow speed (ICC < 0.70). This study highlights good criterion validity and test-retest reliability of spatiotemporal gait parameters measurement using wearable insoles and opens a new possibility to improve care management of patients using clinical gait analysis in daily life activities.


Subject(s)
Gait , Walking , Humans , Reproducibility of Results , Gait Analysis , Shoes , Biomechanical Phenomena
5.
Med Eng Phys ; 108: 103877, 2022 10.
Article in English | MEDLINE | ID: mdl-36195356

ABSTRACT

The Dual Mobility Cup (DMC) was created in 1974 to prevent dislocation and decrease wear. However, the movement of the polyethylene liner in vivo remains unclear. The aims of this study were to visualise liner positions and quantify the accuracy of the liner plane orientation for static positions, using ultrasound imaging. DMC reconstruction and angle between cup and liner were evaluated on isolated submerged DMCs by comparing 3D laser scans and ultrasound imaging. Moreover, the abduction and anteversion angles of the liner plane relative to the pelvis orientation were calculated via combined motion analysis and 3D ultrasound imaging on four fresh post-mortem human subjects with implanted DMC. On submerged DMC, the mean angle error between ultrasound imaging and 3D scan was 1.2°. In cadaveric experiments, intra-operator repeatability proved satisfactory, with low range value (lower than 2°) and standard deviation (lower than 1°). The study demonstrates the feasibility of measuring liner orientation on submerged and ex vivo experiments using ultrasound imaging, and is a first step towards in vivo analysis of DMC movement.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Acetabulum/diagnostic imaging , Acetabulum/surgery , Arthroplasty, Replacement, Hip/methods , Humans , Imaging, Three-Dimensional , Polyethylene , Ultrasonography
6.
SICOT J ; 6: 27, 2020.
Article in English | MEDLINE | ID: mdl-32648849

ABSTRACT

Ilio-psoas impingement after total hip arthroplasty often occurs with the metallic rim of the acetabular cup. The main causes are poor cup anteversion or anterior wall defect. We firstly report here the case of a patient complaining of iliopsoas impingement due to contact with the liner of a dual-mobility device. Ultrasonography and Computed Tomographic scan clearly showed the direct mechanical contact of the dual-mobility liner with the iliopsoas tendon.

SELECTION OF CITATIONS
SEARCH DETAIL