Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27209-27223, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747220

ABSTRACT

In view of developing photoelectrosynthetic cells which are able to store solar energy in chemical bonds, water splitting is usually the reaction of choice when targeting hydrogen production. However, alternative approaches can be considered, aimed at substituting the anodic reaction of water oxidation with more commercially capitalizable oxidations. Among them, the production of bromine from bromide ions was investigated long back in the 1980s by Texas Instruments. Herein we present optimized perylene-diimide (PDI)-sensitized antimony-doped tin oxide (ATO) photoanodes enabling the photoinduced HBr splitting with >4 mA/cm2 photocurrent densities under 0.1 W/cm2 AM1.5G illumination and 91 ± 3% faradaic efficiencies for bromine production. These remarkable results, among the best currently reported for the photoelectrochemical Br- oxidation by dye sensitized photoanodes, are strongly related to the occupancy extent of ATO's intragap (IG) states, generated upon Sb-doping, as demonstrated by comparing their performances with PDI-sensitized analogues on both undoped SnO2- and TiO2-passivated ATO scaffolds by means of (spectro)electrochemistry and electrochemical impedance spectroscopy. The architecture of the ATO-PDI photoanodic assembly was further modified via the introduction of a molecular iridium-based water oxidation catalyst, thus proving the versatility of the proposed hybrid interfaces as photoanodic platforms for photoinduced oxidations in PEC devices.

2.
Chemistry ; 30(23): e202401061, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38595065

ABSTRACT

Invited for the cover of this issue are the groups of Marcella Bonchio at the University of Padova and Jérôme Canivet at the CNRS-University of Lyon. The image depicts the hierarchical self-organization of bio-inspired quantasomes, crosslinked within a polystyrene network to enchain their lateral and orthogonal proximity for long-lasting oxygen evolution using green photons. Read the full text of the article at 10.1002/chem.202303784.

3.
Chemistry ; 30(23): e202303784, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38289975

ABSTRACT

PSII-inspired quantasomes have emerged as promising artificial photosystems evolving oxygen from water due to their integrated multi-chromophore asset, hierarchical architecture, and efficient light-harvesting capabilities. In this study, we adopt a combined covalent and supramolecular strategy by implementing a poly-styrene backbone that reinforces proximity and pairing between adjacent perylenebisimide (PBI) quantasome units. The covalent fixation of the quantasome network results in a significant enhancement of the photoelectrocatalytic performance on engineered IO-ITO photoanodes, with up to 290 % photocurrent increase (J up to 100 µA cm-2, λ >450 nm, applied bias <1.23 V vs RHE, F.E.O2 >80 %) compared to the non-polymerized analog. Moreover, the direct PBI-quantasome polymerization on the photoanode surface was performed by light irradiation of the radical initiator 2,2'-Azobis(2-methylpropionamidine), improving the photoelectrode robustness under high solar irradiance (>8 suns) and limiting the photocurrent loss (<20 %) at 1.52 V vs RHE compared to the non-polymerized system.

4.
Nat Synth ; 9622023 05 10.
Article in English | MEDLINE | ID: mdl-37325160

ABSTRACT

Information gained from in-depth mechanistic investigations can be used to control the selectivity of reactions, leading to the expansion of the generality of synthetic processes and the discovery of new reactivity. Here, we investigate the mechanism of light-driven [2+2] heterocycloadditions (Paternò-Büchi reactions) between indoles and ketones to develop insight into these processes. Using ground-state UV-Vis absorption and transient absorption spectroscopy (TAS), together with DFT calculations, we found that the reactions can proceed via an exciplex or electron-donor-acceptor (EDA) complex, which are key intermediates in determining the stereoselectivity of the reactions. We used this discovery to control the diastereoselectivity of the reactions, gaining access to previously inaccessible diastereoisomeric variants. When moving from 370 to 456 nm irradiation, the EDA complex is increasingly favoured, and the diastereomeric ratio (d.r.) of the product moves from >99:<1 to 47:53. In contrast, switching from methyl to ipropyl substitution favours the exciplex intermediate, reversing the d.r. from 89:11 to 16:84. Our study shows how light and steric parameters can be rationally used to control the diastereoselectivity of photoreactions, creating mechanistic pathways to previously inaccessible stereochemical variants.

5.
J Am Chem Soc ; 144(31): 14021-14025, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35881505

ABSTRACT

As the natural-born photoelectrolyzer for oxygen delivery, photosystem II (PSII) is hardly replicated with man-made constructs. However, building on the "quantasome" hypothesis ( Science 1964, 144, 1009-1011), PSII mimicry can be pared down to essentials by shaping a photocatalytic ensemble (from the Greek term "soma" = body) where visible-light quanta trigger water oxidation. PSII-inspired quantasomes (QS) readily self-assemble into hierarchical photosynthetic nanostacks, made of bis-cationic perylenebisimides (PBI2+) as chromophores and deca-anionic tetraruthenate polyoxometalates (Ru4POM) as water oxidation catalysts ( Nat. Chem. 2019, 11, 146-153). A combined supramolecular and click-chemistry strategy is used herein to interlock the PBI-QS with tetraethylene glycol (TEG) cross-linkers, yielding QS-TEGlock with increased water solvation, controlled growth, and up to a 340% enhancement of the oxygenic photocurrent compared to the first generation QS, as probed on 3D-inverse opal indium tin oxide electrodes at 8.5 sun irradiance (λ > 450 nm, 1.28 V vs RHE applied bias, TOFmax = 0.096 ± 0.005 s-1, FEO2 > 95%). Action spectra, catalyst mass-activity, light-management, photoelectrochemical impedance spectroscopy (PEIS) together with Raman mapping of TEG-templated hydration shells point to a key role of the cross-linked PBI/Ru4POM nanoarrays, where the interplay of hydrophilic/hydrophobic domains is reminiscent of PSII-rich natural thylakoids.


Subject(s)
Oxygen , Photosynthesis , Humans , Imides , Light , Oxidation-Reduction , Oxygen/chemistry , Perylene/analogs & derivatives , Photosystem II Protein Complex/chemistry , Water/chemistry
6.
J Chem Theory Comput ; 17(11): 7134-7145, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34676761

ABSTRACT

Spectroscopy simulations are of paramount importance for the interpretation of experimental electronic spectra, the disentangling of overlapping spectral features, and the tracing of the microscopic origin of the observed signals. Linear and nonlinear simulations are based on the results drawn from electronic structure calculations that provide the necessary parameterization of the molecular systems probed by light. Here, we investigate the applicability of excited-state properties obtained from linear-response time-dependent density functional theory (TDDFT) in the description of nonlinear spectra by employing the pseudowavefunction approach and compare them with benchmarks from highly accurate RASSCF/RASPT2 calculations and with high temporal resolution experimental results. As a test case, we consider the prediction of femtosecond transient absorption and two-dimensional electronic spectroscopy of a perylene bisimide dye in solution. We find that experimental signals are well reproduced by both theoretical approaches, showing that the computationally cheaper TDDFT can be a suitable option for the simulation of nonlinear spectroscopy of molecular systems that are too large to be treated with higher-level RASSCF/RASPT2 methods.

7.
Nat Commun ; 12(1): 2640, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976167

ABSTRACT

The design of novel carbon dots with ad hoc properties requires a comprehensive understanding of their formation mechanism, which is a complex task considering the number of variables involved, such as reaction time, structure of precursors or synthetic protocol employed. Herein, we systematically investigated the formation of carbon nanodots by tracking structural, chemical and photophysical features during the hydrothermal synthesis. We demonstrate that the formation of carbon nanodots consists of 4 consecutive steps: (i) aggregation of small organic molecules, (ii) formation of a dense core with an extended shell, (iii) collapse of the shell and (iv) aromatization of the core. In addition, we provide examples of routes towards tuning the core-shell design, synthesizing five novel carbon dots that all consist of an electron-dense core covered by an amine rich ligand shell.

8.
Chemphyschem ; 22(12): 1208-1218, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33851772

ABSTRACT

The cobalt substituted polyoxotungstate [Co6 (H2 O)2 (α-B-PW9 O34 )2 (PW6 O26 )]17- (Co6) displays fast electron transfer (ET) kinetics to photogenerated RuIII (bpy)33+ , 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II)-OH2 and Co6(II)-OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)-OH moiety (Co6(III)-OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa , the Co6(II)-OH→RuIII (bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH

Subject(s)
Coordination Complexes/chemistry , Electrons , Organometallic Compounds/chemistry , Polymers/chemistry , Protons , Tungsten Compounds/chemistry , Cobalt/chemistry , Coordination Complexes/chemical synthesis , Kinetics , Light , Organometallic Compounds/radiation effects , Oxidants/chemistry , Oxidants/radiation effects , Oxidation-Reduction , Polymers/chemical synthesis , Ruthenium/chemistry , Ruthenium/radiation effects , Tungsten Compounds/chemical synthesis , Water/chemistry
9.
Chem Sci ; 11(25): 6532-6538, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-34094119

ABSTRACT

A variety of highly functionalised N-containing polycycles (35 examples) are synthesised from simple indoles and aromatic ketones through a mild visible-light Paternò-Büchi process. Tetrahydrooxeto[2,3-b]indole scaffolds, with up to three contiguous all-substituted stereocenters, are generated in high yield (up to >98%) and excellent site- regio- and diastereocontrol (>20 : 1). The use of visible light (405 or 465 nm) ensures enhanced performances by switching off undesired photodimerisation side reactions. The reaction can be easily implemented using a microfluidic photoreactor with improved productivity (up to 0.176 mmol h-1) and generality. Mechanistic investigations revealed that two alternative reaction mechanisms can account for the excellent regio- and diastereocontrol observed.

10.
Angew Chem Int Ed Engl ; 59(3): 1302-1312, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31660691

ABSTRACT

Twelve naphthochromenone photocatalysts (PCs) were synthesized on gram scale. They absorb across the UV/Vis range and feature an extremely wide redox window (up to 3.22 eV) that is accessible using simple visible light irradiation sources (CFL or LED). Their excited-state redox potentials, PC*/PC.- (up to 1.65 V) and PC.+ /PC* (up to -1.77 V vs. SCE), are such that these novel PCs can engage in both oxidative and reductive quenching mechanisms with strong thermodynamic requirements. The potential of these bimodal PCs was benchmarked in synthetically relevant photocatalytic processes with extreme thermodynamic requirements. Their ability to efficiently catalyze mechanistically opposite oxidative/reductive photoreactions is a unique feature of these organic photocatalysts, thus representing a decisive advance towards generality, sustainability, and cost efficiency in photocatalysis.

11.
Nat Chem ; 11(5): 495, 2019 05.
Article in English | MEDLINE | ID: mdl-30867579

ABSTRACT

In the version of this Article originally published, in the graphical abstract the y-axis units of the plot read 'mA cm-2', but should have read 'µA cm-2'. Additionally, an erroneous gap appeared in the red trace. These errors have now been corrected.

12.
Nat Chem ; 11(2): 146-153, 2019 02.
Article in English | MEDLINE | ID: mdl-30510216

ABSTRACT

The oxygen in Earth's atmosphere is there primarily because of water oxidation performed by photosynthetic organisms using solar light and one specialized protein complex, photosystem II (PSII). High-resolution imaging of the PSII 'core' complex shows the ideal co-localization of multi-chromophore light-harvesting antennas with the functional reaction centre. Man-made systems are still far from replicating the complexity of PSII, as the majority of PSII mimetics have been limited to photocatalytic dyads based on a 1:1 ratio of a light absorber, generally a Ru-polypyridine complex, with a water oxidation catalyst. Here we report the self-assembly of multi-perylene-bisimide chromophores (PBI) shaped to function by interaction with a polyoxometalate water-oxidation catalyst (Ru4POM). The resulting [PBI]5Ru4POM complex shows a robust amphiphilic structure and dynamic aggregation into large two-dimensional paracrystalline domains, a redshifted light-harvesting efficiency of >40% and favourable exciton accumulation, with a peak quantum efficiency using 'green' photons (λ > 500 nm). The modularity of the building blocks and the simplicity of the non-covalent chemistry offer opportunities for innovation in artificial photosynthesis.

13.
ACS Nano ; 12(6): 5800-5806, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29869880

ABSTRACT

Hydrogelation, the self-assembly of molecules into soft, water-loaded networks, is one way to bridge the structural gap between single molecules and functional materials. The potential of hydrogels, such as those based on perylene bisimides, lies in their chemical, physical, optical, and electronic properties, which are governed by the supramolecular structure of the gel. However, the structural motifs and their precise role for long-range conductivity are yet to be explored. Here, we present a comprehensive structural picture of a perylene bisimide hydrogel, suggesting that its long-range conductivity is limited by charge transfer between electronic backbones. We reveal nanocrystalline ribbon-like structures as the electronic and structural backbone units between which charge transfer is mediated by polar solvent bridges. We exemplify this effect with sensing, where exposure to polar vapor enhances conductivity by 5 orders of magnitude, emphasizing the crucial role of the interplay between structural motif and surrounding medium for the rational design of devices based on nanocrystalline hydrogels.

14.
Angew Chem Int Ed Engl ; 57(18): 5062-5067, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29462504

ABSTRACT

We show how the redox potentials of carbon nanodots (CNDs) can be modulated by employing quinones as electroactive precursors during a microwave-assisted synthesis. We prepared and characterized a redox library of CNDs, demonstrating that this approach can promote the use of carbon nanodots for ad hoc applications, including photocatalysis.

15.
Phys Chem Chem Phys ; 19(21): 14055-14065, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28518200

ABSTRACT

Herein, the synthesis and the photophysical and redox properties of a new perylene bisimide (PBI) species (L), bearing two 1,10-phenanthroline (phen) ligands at the two imide positions of the PBI, and its dinuclear Ru(ii) and Os(ii) complexes, [(bpy)2Ru(µ-L)Ru(bpy)2](PF6)4 (Ru2; bpy = 2,2'-bipyridine) and [(Me2-bpy)2Os(µ-L)Os(Me2-bpy)2](PF6)4 (Os2; Me2-bpy = (4,4'-dimethyl)-2,2'-bipyridine), are reported. The absorption spectra of the compounds are dominated by the structured bands of the PBI subunit due to the lowest-energy spin-allowed π-π* transition. The spin-allowed MLCT transitions in Ru2 and Os2 are inferred by the absorption at 350-470 nm, where the PBI absorption is negligible. The absorption band extends towards the red region for Os2 due to the spin-forbidden MLCT transitions, intensified by the heavy osmium center. The reduction processes of the compounds are dominated by two successive mono-electronic PBI-based processes, which in the metal complexes are slightly shifted compared to the free ligand. On oxidation, both metal complexes undergo an apparent bi-electronic process (at 1.31 V vs. SCE for Ru2 and 0.77 V for Os2), attributed to the simultaneous one-electron oxidation of the two weakly-interacting metal centers. In Ru2 and Os2, the intense fluorescence of L subunit (λmax, 535 nm; τ, 4.3 ns; Φ, 0.91) is fully quenched, mainly by photoinduced electron transfer from the metal centers, on the ps timescale (time constant, 11 ps in Ru2 and 3 ps in Os2). Such photoinduced electron transfer leads to the formation of a charge-separated state, which directly decays to the ground state in about 70 ps in Os2, but produces the triplet π-π* state of the PBI subunit in 35 ps in Ru2. The results provide information on the excited-state processes of the hybrid species combining two dominant classes of chromophore/luminophore species, the PBI and the metal polypyridine complexes, and can be used for future design on new hybrid species with made-to-order properties.

16.
Chem Commun (Camb) ; 50(35): 4607-9, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24667888

ABSTRACT

A bio-inspired manganese(ii) complex with a linear pentadentate ligand framework containing soft sulfur donors and an alternating NSNSN binding motif displays excellent dual CAT/SOD-like antioxidant activity with high turnover efficiency and good operation stability in an aqueous environment.


Subject(s)
Antioxidants/chemistry , Biomimetic Materials/chemistry , Catalase/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Superoxide Dismutase/chemistry , Catalytic Domain , Hydrogen Peroxide/chemistry , Ligands , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...