Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 12: 725932, 2021.
Article in English | MEDLINE | ID: mdl-34630238

ABSTRACT

Rapid advances in the field of Deep Reinforcement Learning (DRL) over the past several years have led to artificial agents (AAs) capable of producing behavior that meets or exceeds human-level performance in a wide variety of tasks. However, research on DRL frequently lacks adequate discussion of the low-level dynamics of the behavior itself and instead focuses on meta-level or global-level performance metrics. In doing so, the current literature lacks perspective on the qualitative nature of AA behavior, leaving questions regarding the spatiotemporal patterning of their behavior largely unanswered. The current study explored the degree to which the navigation and route selection trajectories of DRL agents (i.e., AAs trained using DRL) through simple obstacle ridden virtual environments were equivalent (and/or different) from those produced by human agents. The second and related aim was to determine whether a task-dynamical model of human route navigation could not only be used to capture both human and DRL navigational behavior, but also to help identify whether any observed differences in the navigational trajectories of humans and DRL agents were a function of differences in the dynamical environmental couplings.

2.
Hum Mov Sci ; 76: 102776, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33639354

ABSTRACT

Observational learning can enhance the acquisition and performance quality of complex motor skills. While an extensive body of research has focused on the benefits of synchronous (i.e., concurrent physical practice) and non-synchronous (i.e., delayed physical practice) observational learning strategies, the question remains as to whether these approaches differentially influence performance outcomes. Accordingly, we investigate the differential outcomes of synchronous and non-synchronous observational training contexts using a novel dance sequence. Using multidimensional cross-recurrence quantification analysis, movement time-series were recorded for novice dancers who either synchronised with (n = 22) or observed and then imitated (n = 20) an expert dancer. Participants performed a 16-count choreographed dance sequence for 20 trials assisted by the expert, followed by one final, unassisted performance trial. Although end-state performance did not significantly differ between synchronous and non-synchronous learners, a significant decline in performance quality from imitation to independent replication was shown for synchronous learners. A non-significant positive trend in performance accuracy was shown for non-synchronous learners. For all participants, better imitative performance across training trials led to better end-state performance, but only for the accuracy (and not timing) of movement reproduction. Collectively, the results suggest that synchronous learners came to rely on a real-time mapping process between visual input from the expert and their own visual and proprioceptive intrinsic feedback, to the detriment of learning. Thus, the act of synchronising alone does not ensure an appropriate training context for advanced sequence learning.


Subject(s)
Dancing , Feedback, Sensory , Imitative Behavior/physiology , Learning , Movement/physiology , Adolescent , Adult , Female , Humans , Male , Motion , Motor Skills , Reproducibility of Results , Young Adult
3.
Sci Rep ; 10(1): 6308, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286413

ABSTRACT

Human behaviour, along with any natural/biological behaviour, has varying degrees of intrinsic 'noise' or variability. Many studies have shown that the structure or patterning of this variability is sensitive to changes in task and constraint. Furthermore, two or more humans interacting together often begin to exhibit similar structures of behavioural variability (i.e., the patterning of their behavioural fluctuations becomes aligned or matched) independent of any moment-to-moment synchronization (termed complexity matching). However, much of the previous work has focused on a subset of simple or contrived behaviours within the context of highly controlled laboratory tasks. In the current study, individuals and pairs performed five self-paced (unsupervised), semi-structured activities around a university campus. Empatica E4 wristbands and iPhones were used to record the participants' behavioural activity via accelerometers and GPS. The results revealed that the structure of variability in naturalistic human behaviour co-varies with the task-goal constraints, and that the patterning of the behavioural fluctuations exhibited by co-acting individuals does become aligned during the performance of everyday activities. The results also revealed that the degree of complexity matching that occurred between pairs remained invariant across activity type, indicating that this measure could be employed as a robust, task-independent index of interpersonal behaviour.


Subject(s)
Interpersonal Relations , Psychomotor Performance/physiology , Accelerometry/instrumentation , Accelerometry/methods , Adolescent , Adult , Female , Geographic Information Systems , Humans , Male , Wearable Electronic Devices , Young Adult
4.
J Exp Psychol Hum Percept Perform ; 42(3): 308-19, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26727019

ABSTRACT

Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record


Subject(s)
Auditory Perception , Music/psychology , Posture/physiology , Psychomotor Performance , Adolescent , Adult , Female , Humans , Male , Young Adult
5.
Front Hum Neurosci ; 8: 713, 2014.
Article in English | MEDLINE | ID: mdl-25309389

ABSTRACT

When humans perform a response task or timing task repeatedly, fluctuations in measures of timing from one action to the next exhibit long-range correlations known as 1/f noise. The origins of 1/f noise in timing have been debated for over 20 years, with one common explanation serving as a default: humans are composed of physiological processes throughout the brain and body that operate over a wide range of timescales, and these processes combine to be expressed as a general source of 1/f noise. To test this explanation, the present study investigated the coupling vs. independence of 1/f noise in timing deviations, key-press durations, pupil dilations, and heartbeat intervals while tapping to an audiovisual metronome. All four dependent measures exhibited clear 1/f noise, regardless of whether tapping was synchronized or syncopated. 1/f spectra for timing deviations were found to match those for key-press durations on an individual basis, and 1/f spectra for pupil dilations matched those in heartbeat intervals. Results indicate a complex, multiscale relationship among 1/f noises arising from common sources, such as those arising from timing functions vs. those arising from autonomic nervous system (ANS) functions. Results also provide further evidence against the default hypothesis that 1/f noise in human timing is just the additive combination of processes throughout the brain and body. Our findings are better accommodated by theories of complexity matching that begin to formalize multiscale coordination as a foundation of human behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...