Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 26967-26983, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747623

ABSTRACT

As lithium-ion (Li-ion) batteries approach their theoretical limits, alternative energy storage systems that can power technology with greater energy demands must be realized. Li-metal batteries, particularly Li-air batteries (LABs), are considered a promising energy storage candidate due to their inherent lightweight and energy-dense properties. Unfortunately, LAB practicality remains hindered by inadequate oxygen solubility and diffusion rates within the electrolyte, both which are fundamental for LAB operation. Due to exceptionally high oxygen solubilities, perfluorochemicals (PFCs) have been investigated as a promising solution to this issue. Although PFCs have been reported to enhance LAB performance and longevity when implemented within the cathodic regions of LABs in several studies, the influence of this class of compounds on other components of the battery (including the anode and the electrolyte) is also highly important. This paper reviews the use of PFCs in LABs to date and discusses the performance enhancements resulting from their implementation. We identify and discuss future prospects and emerging research directions for the use of PFCs into LAB design, in the effort toward realization of high-performing LAB technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...