Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 3(15): 4388-4394, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-36133465

ABSTRACT

The electrical properties of an all-oxide core-shell ZnO-Co3O4 nanorod heterojunction were studied in the dark and under UV-vis illumination. The contact potential difference and current distribution maps were obtained utilizing new methods in dynamic multifrequency atomic force microscopy (AFM) such as electrostatic and conductive intermodulation AFM. Light irradiation modified the electrical properties of the nanorod heterojunction. The new techniques are able to follow the instantaneous local variation of the photocurrent, giving a two-dimensional (2D) map of the current-voltage curves and correlating the electrical and morphological features of the heterostructured core-shell nanorods.

2.
J Cult Herit ; 51: 1-13, 2021.
Article in English | MEDLINE | ID: mdl-35702145

ABSTRACT

The ongoing Coronavirus crisis involved almost all sectors as well as museums, collections, and historical sites all over the world. Even though artworks do not have the ability to spread the virus, the pandemic officially introduced in cultural sites alcohol-based products (even by visitors for personal use) as these products were indicated to be able to inactivate the virus and were imposed by many local authorities. In this context, the need to conciliate the safety of the visitors and the protection of artworks represents a challenging task. The possibility that accumulation of vapour coming from the sanitizing solutions or from accidental spills, potentially caused also by visitors, should be considered. The study focuses specifically on the possible interactions between sanitizing alcohol-based products and silk, since this material is present in many cultural sites all over the world on upholsteries and tapestries. The recommended sanitising solution (75% ethanol, 20% water, 5% benzalkonium chloride) selected by the Italian Ministry for Cultural Heritage (MIBACT) was considered. Pure distilled water, absolute ethanol and water/ethanol blends in different concentrations were also tested. Chemical and morphological variations on the silk have been evaluated with Scanning Electron Microscopy - SEM, Atomic Force Microscopy - AFM and portable instruments (contact microscope, colorimeter, Infrared and Raman spectroscopy). IR and Raman analyses did not detect significant chemical changes in silk. However, Raman spectra showed, after immersion treatments, minor variations in the intensity of peaks attributed to dyes. Residues of benzalkonium chloride after immersion tests in sanitising solution are present, confirmed also by SEM and AFM analyses. Even if chemical spectroscopic changes were not relevant, the colour of few samples seemed to consistently fade after immersion treatments, thus affecting the visual appearance of textiles.

3.
ChemSusChem ; 13(17): 4759-4767, 2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32697394

ABSTRACT

The preparation of nanoparticles represents a powerful tool for lignin valorization, as it combines easy methodologies with high application potential. Different synthetic strategies and various lignin sources have been employed in the process. However, the great variability in the lignin structure prevents a direct comparison of the so far reported lignin nanoparticles (LNPs), especially as regards their physicochemical and functional properties. To this purpose, two green protocols, that is, solvent-antisolvent and hydrotropic, were optimized and used to generate LNPs from the same softwood kraft lignin. The nanomaterials were fully characterized to extrapolate structure/property relationships and reveal any differences in the mechanism of self-assembly. Furthermore, tests on methylene blue entrapment capacity and release behavior at two different pH values (2.0 and 7.4) evidenced a clear dependence on the LNPs characteristics and thus on the strategy adopted for their production.

4.
ACS Appl Mater Interfaces ; 11(26): 23454-23462, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31252456

ABSTRACT

Self-powered photodetectors operating in the UV-visible-NIR window made of environmentally friendly, earth abundant, and cheap materials are appealing systems to exploit natural solar radiation without external power sources. In this study, we propose a new p-n junction nanostructure, based on a ZnO-Co3O4 core-shell nanowire (NW) system, with a suitable electronic band structure and improved light absorption, charge transport, and charge collection, to build an efficient UV-visible-NIR p-n heterojunction photodetector. Ultrathin Co3O4 films (in the range 1-15 nm) were sputter-deposited on hydrothermally grown ZnO NW arrays. The effect of a thin layer of the Al2O3 buffer layer between ZnO and Co3O4 was investigated, which may inhibit charge recombination, boosting device performance. The photoresponse of the ZnO-Al2O3-Co3O4 system at zero bias is 6 times higher compared to that of ZnO-Co3O4. The responsivity ( R) and specific detectivity ( D*) of the best device were 21.80 mA W-1 and 4.12 × 1012 Jones, respectively. These results suggest a novel p-n junction structure to develop all-oxide UV-vis photodetectors based on stable, nontoxic, low-cost materials.

5.
ACS Appl Mater Interfaces ; 10(47): 40958-40965, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30398332

ABSTRACT

Plasmonic Cu nanoparticles (NP) were successfully deposited on ZnO substrates by atomic layer deposition (ALD) owing to the Volmer-Weber island growth mode. An evolution from Cu NP to continuous Cu films was observed with an increasing number of ALD cycles. Real and imaginary parts of the NP dielectric functions, determined by spectroscopic ellipsometry using an effective medium approach, evidence a localized surface plasmon resonance that can be tuned between the visible and near-infrared ranges by controlling the interparticle spacing and size of the NP. The resulting Cu NP/ZnO device shows an enhanced photoresponse under white light illumination with good responsivity values, fast response times, and stability under dark/light cycles. The significant photocurrent detected for this device is related to the hot-electron generation at the NP surface and injection into the conduction band of ZnO. The possibility of tuning the plasmon resonance together with the photoresponsivity of the device is promising in many applications related to photodetection, photonics, and photovoltaics.

6.
ACS Appl Mater Interfaces ; 10(43): 37671-37678, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30261135

ABSTRACT

Area-selective atomic layer deposition (AS-ALD) has attracted much attention in recent years due to the possibility of achieving accurate patterns in nanoscale features, which render this technique compatible with the continuous downscaling in nanoelectronic devices. The growth selectivity is achieved by starting from different materials and results (ideally) in localized growth of a single material. We propose here a new concept, more subtle and general, in which a property of the substrate is modulated to achieve localized growth of different materials. This concept is demonstrated by selective growth of high-quality metallic Cu and semiconducting Cu2O thin films, achieved by changing the type of majority point defects in the ZnO underneath film exposed to the reactive species using a patterned bilayer structure composed of highly conductive and highly resistive areas, as confirmed by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The selective growth of these materials in a patterned ZnO/Al-doped ZnO substrate allows the fabrication of p-Cu2O/n-ZnO nanojunctions showing a nonlinear rectifying behavior typical of a p-n junction, as confirmed by conductive atomic force microscopy (C-AFM). This process expands the spectra of materials that can be grown in a selective manner by ALD and opens up the possibility of fabricating different architectures, taking advantage of the area-selective deposition. This offers a variety of opportunities in the field of transparent electronics, catalysis, and photovoltaics.

7.
Sensors (Basel) ; 17(4)2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28353673

ABSTRACT

This work reports the recent results achieved at the SENSOR Lab, Brescia (Italy) to address the selectivity of metal oxide based gas sensors. In particular, two main strategies are being developed for this purpose: (i) investigating different sensing mechanisms featuring different response spectra that may be potentially integrated in a single device; (ii) exploiting the electronic nose (EN) approach. The former has been addressed only recently and activities are mainly focused on determining the most suitable configuration and measurements to exploit the novel mechanism. Devices suitable to exploit optical (photoluminescence), magnetic (magneto-optical Kerr effect) and surface ionization in addition to the traditional chemiresistor device are here discussed together with the sensing performance measured so far. The electronic nose is a much more consolidated technology, and results are shown concerning its suitability to respond to industrial and societal needs in the fields of food quality control and detection of microbial activity in human sweat.

8.
Nanotechnology ; 27(14): 145605, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26916977

ABSTRACT

A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

9.
Analyst ; 138(24): 7392-9, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24171188

ABSTRACT

The possibility of using novel architectures based on carbon nanotubes (CNTs) for a realistic monitoring of the air quality in an urban environment requires the capability to monitor concentrations of polluting gases in the low-ppb range. This limit has been so far virtually neglected, as most of the testing of new ammonia gas sensor devices based on CNTs is carried out above the ppm limit. In this paper, we present single-wall carbon nanotube (SWCNT) chemiresistor gas sensors operating at room temperature, displaying an enhanced sensitivity to NH3. Ammonia concentrations in air as low as 20 ppb have been measured, and a detection limit of 3 ppb is demonstrated, which is in the full range of the average NH3 concentration in an urban environment and well below the sensitivities so far reported for pristine, non-functionalized SWCNTs operating at room temperature. In addition to careful preparation of the SWCNT layers, through sonication and dielectrophoresis that improved the quality of the CNT bundle layers, the low-ppb limit is also attained by revealing and properly tracking a fast dynamics channel in the desorption process of the polluting gas molecules.

10.
Dalton Trans ; 42(13): 4552-60, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23353757

ABSTRACT

A propyltrimethoxysilane-modified 2,2'-bipyridine ligand is synthesized and its acetonitrile solutions are used to prepare monolayers of the molecule on glass surfaces. Absorption and X-ray photoelectron spectroscopy demonstrate that the modified glass surfaces bind Cu(2+) with a 1:1 ratio with respect to the 2,2'-bipyridine moieties under the chosen preparative conditions, producing materials bearing 0.016 µg cm(-2) of copper. Although in trace amounts, the bound Cu(2+) cations exert a significant microbicidal effect against Escherichia coli and Staphylococcus aureus.


Subject(s)
2,2'-Dipyridyl/chemistry , Anti-Bacterial Agents/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Glass/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Silanes/chemistry , Staphylococcus aureus/drug effects , Surface Properties
11.
J Environ Monit ; 14(6): 1565-75, 2012 May.
Article in English | MEDLINE | ID: mdl-22517026

ABSTRACT

The present study is focused on the implementation of a novel, low cost, urban grid of nanostructured chemresistor gas sensors for ammonia concentration ([NH(3)]) monitoring, with NH(3) being one of the main precursors of secondary fine particulate. Low-cost chemresistor gas sensors based on carbon nanotubes have been developed, their response to [NH(3)] in the 0.17-5.0 ppm range has been tested, and the devices have been properly calibrated under different relative humidity conditions in the 33-63% range. In order to improve the chemresistor selectivity towards [NH(3)], an Expert System, based on fuzzy logic and genetic algorithms, has been developed to extract the atmospheric [NH(3)] (with a sensitivity of a few ppb) from the output signal of a model chemresistor gas sensor exposed to an NO(2), NO(X) and O(3) gas mixture. The concentration of these pollutants that are known to be the most significant interfering compounds during ammonia detection with carbon nanotube gas sensors has been tracked by the ARPA monitoring network in the city of Milan and the historical dataset collected over one year has been used to train the Expert System.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Environmental Monitoring/instrumentation , Air Pollution/statistics & numerical data , Algorithms , Cities , Environmental Monitoring/economics , Environmental Monitoring/methods , Fuzzy Logic , Italy , Nitrogen Dioxide/analysis , Nitrogen Oxides/analysis , Ozone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...