Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38543119

ABSTRACT

The BRCA1 is a tumor suppressor gene that encodes for the BRCA1 protein, which plays a vital role in DNA repair, cell cycle regulation, and the maintenance of genomic stability. The BRCA1 protein interacts with a variety of other proteins that play essential roles in gene regulation and embryonic development. It is a large protein composed of multiple domains. The C-terminal region of the BRCA1 protein consists of two BRCT domains connected by a short linker. The BRCT domains are crucial in protein-protein interactions as well as in DNA damage response and cell cycle regulation through their phosphoprotein binding modules that recognize the phosphorylated protein sequence motif of other kinases. Mutations within the BRCT domain can disrupt the normal function of BRCA1 and lead to an increased risk of developing breast and ovarian cancer. Herein, we explore the structural characteristics of BRCA1, focusing on the BRCT domain, its interactions with key cellular components, and its involvement in various cellular processes. In addition, the impact of BRCT domain mutations on breast and ovarian cancer susceptibility, prognosis, and treatment options is discussed. By providing a comprehensive understanding of the BRCT domain of BRCA1, this review aims to shed light on the role of this important domain in the pathogenesis and potential therapeutic approaches for breast and ovarian cancer.

2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958614

ABSTRACT

Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.


Subject(s)
Calmodulin , Ryanodine Receptor Calcium Release Channel , Male , Animals , Humans , Child , Calmodulin/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Arrhythmias, Cardiac/genetics , Mutation , Calcium/metabolism
3.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37754829

ABSTRACT

Athletic performance is a multifactorial trait influenced by a complex interaction of environmental and genetic factors. Over the last decades, understanding and improving elite athletes' endurance and performance has become a real challenge for scientists. Significant tools include but are not limited to the development of molecular methods for talent identification, personalized exercise training, dietary requirements, prevention of exercise-related diseases, as well as the recognition of the structure and function of the genome in elite athletes. Investigating the genetic markers and phenotypes has become critical for elite endurance surveillance. The identification of genetic variants contributing to a predisposition for excellence in certain types of athletic activities has been difficult despite the relatively high genetic inheritance of athlete status. Metabolomics can potentially represent a useful approach for gaining a thorough understanding of various physiological states and for clarifying disorders caused by strength-endurance physical exercise. Based on a previous GWAS study, this manuscript aims to discuss the association of specific single-nucleotide polymorphisms (SNPs) located in the MYBPC3 gene encoding for cardiac MyBP-C protein with endurance athlete status. MYBPC3 is linked to elite athlete heart remodeling during or after exercise, but it could also be linked to the phenotype of cardiac hypertrophy (HCM). To make the distinction between both phenotypes, specific metabolites that are influenced by variants in the MYBPC3 gene are analyzed in relation to elite athletic performance and HCM. These include theophylline, ursodeoxycholate, quinate, and decanoyl-carnitine. According to the analysis of effect size, theophylline, quinate, and decanoyl carnitine increase with endurance while decreasing with cardiovascular disease, whereas ursodeoxycholate increases with cardiovascular disease. In conclusion, and based on our metabolomics data, the specific effects on athletic performance for each MYBPC3 SNP-associated metabolite are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...