Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 16: 835680, 2022.
Article in English | MEDLINE | ID: mdl-35548690

ABSTRACT

Inter-individual differences in behavioral responses, anatomy or functional properties of neuronal populations of animals having the same genotype were for a long time disregarded. The majority of behavioral studies were conducted at a group level, and usually the mean behavior of all individuals was considered. Similarly, in neurophysiological studies, data were pooled and normalized from several individuals. This approach is mostly suited to map and characterize stereotyped neuronal properties between individuals, but lacks the ability to depict inter-individual variability regarding neuronal wiring or physiological characteristics. Recent studies have shown that behavioral biases and preferences to olfactory stimuli can vary significantly among individuals of the same genotype. The origin and the benefit of these diverse "personalities" is still unclear and needs to be further investigated. A perspective taken into account the inter-individual differences is needed to explore the cellular mechanisms underlying this phenomenon. This review focuses on olfaction in the vinegar fly Drosophila melanogaster and summarizes previous and recent studies on odor-guided behavior and the underlying olfactory circuits in the light of inter-individual variability. We address the morphological and physiological variabilities present at each layer of the olfactory circuitry and attempt to link them to individual olfactory behavior. Additionally, we discuss the factors that might influence individuality with regard to olfactory perception.

2.
Biomolecules ; 11(4)2021 03 30.
Article in English | MEDLINE | ID: mdl-33808208

ABSTRACT

The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted "transporter role", OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.


Subject(s)
Insect Proteins/chemistry , Insect Proteins/metabolism , Insecta/physiology , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Animals , Evolution, Molecular , Gene Expression , Hematopoiesis , Insect Proteins/genetics , Pheromones/metabolism , Receptors, Odorant/genetics , Sexual Behavior, Animal
3.
Cell Mol Life Sci ; 77(13): 2565-2577, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31564000

ABSTRACT

Odorant-binding proteins (OBPs) are small soluble proteins that are thought to transport hydrophobic odorants across the aqueous sensillar lymph to olfactory receptors. A recent study revealed that OBP28a, one of the most abundant Drosophila OBPs, is not required for odorant transport, but acts in buffering rapid odour variation in the odorant environment. To further unravel and decipher its functional role, we expressed recombinant OBP28a and characterized its binding specificity. Using a fluorescent binding assay, we found that OBP28a binds a restricted number of floral-like chemicals, including ß-ionone, with an affinity in the micromolar range. We solved the X-ray crystal structure of OBP28a, which showed extensive conformation changes upon ligand binding. Mutant flies genetically deleted for the OBP28a gene showed altered responses to ß-ionone at a given concentration range, supporting its essential role in the detection of specific compounds present in the natural environment of the fly.


Subject(s)
Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Norisoprenoids , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Gene Deletion , Intercellular Signaling Peptides and Proteins/genetics , Ligands , Protein Conformation , Receptors, Odorant/genetics , Smell
4.
Commun Biol ; 2: 425, 2019.
Article in English | MEDLINE | ID: mdl-31799428

ABSTRACT

Animals need to detect in the food essential amino acids that they cannot synthesize. We found that the odorant binding protein OBP19b, which is highly expressed in Drosophila melanogaster taste sensilla, is necessary for the detection of several amino acids including the essential l-phenylalanine. The recombinant OBP19b protein was produced and characterized for its binding properties: it stereoselectively binds to several amino acids. Using a feeding-choice assay, we found that OBP19b is necessary for detecting l-phenylalanine and l-glutamine, but not l-alanine or D-phenylalanine. We mapped the cells expressing OBP19b and compared the electrophysiological responses of a single taste sensillum to several amino acids: OBP19b mutant flies showed a reduced response compared to control flies when tested to preferred amino acids, but not to the other ones. OBP19b is well conserved in phylogenetically distant species suggesting that this protein is necessary for detection of specific amino acids in insects.


Subject(s)
Amino Acids, Essential/metabolism , Receptors, Odorant/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Conserved Sequence , Drosophila/genetics , Drosophila/metabolism , Electrophysiological Phenomena , Evolution, Molecular , Fluorescent Antibody Technique , Gene Expression , Receptors, Odorant/chemistry , Receptors, Odorant/genetics
5.
PeerJ ; 6: e4318, 2018.
Article in English | MEDLINE | ID: mdl-29456884

ABSTRACT

BACKGROUND: The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. METHODS: The link between desiccation resistance and CH profile remains unclear, so we tested (1) experimentally selected desiccation-resistant lines, (2) transgenic flies with altered desaturase expression and (3) natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. RESULTS: We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. DISCUSSION: We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.

SELECTION OF CITATIONS
SEARCH DETAIL
...