Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biotechnol ; 42(7): 895-909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38320912

ABSTRACT

Cells provide dynamic platforms for executing exogenous genetic programs in synthetic biology, resulting in highly context-dependent circuit performance. Recent years have seen an increasing interest in understanding the intricacies of circuit-host relationships, their influence on the synthetic bioengineering workflow, and in devising strategies to alleviate undesired effects. We provide an overview of how emerging circuit-host interactions, such as growth feedback and resource competition, impact both deterministic and stochastic circuit behaviors. We also emphasize control strategies for mitigating these unwanted effects. This review summarizes the latest advances and the current state of host-aware and resource-aware design of synthetic gene circuits.


Subject(s)
Gene Regulatory Networks , Genes, Synthetic , Synthetic Biology , Synthetic Biology/methods , Gene Regulatory Networks/genetics , Genes, Synthetic/genetics , Genetic Engineering/methods
2.
Nucleic Acids Res ; 52(3): 1512-1521, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38164993

ABSTRACT

The field of synthetic biology and biosystems engineering increasingly acknowledges the need for a holistic design approach that incorporates circuit-host interactions into the design process. Engineered circuits are not isolated entities but inherently entwined with the dynamic host environment. One such circuit-host interaction, 'growth feedback', results when modifications in host growth patterns influence the operation of gene circuits. The growth-mediated effects can range from growth-dependent elevation in protein/mRNA dilution rate to changes in resource reallocation within the cell, which can lead to complete functional collapse in complex circuits. To achieve robust circuit performance, synthetic biologists employ a variety of control mechanisms to stabilize and insulate circuit behavior against growth changes. Here we propose a simple strategy by incorporating one repressive edge in a growth-sensitive bistable circuit. Through both simulation and in vitro experimentation, we demonstrate how this additional repressive node stabilizes protein levels and increases the robustness of a bistable circuit in response to growth feedback. We propose the incorporation of repressive links in gene circuits as a control strategy for desensitizing gene circuits against growth fluctuations.


Subject(s)
Gene Regulatory Networks , Synthetic Biology , Computer Simulation , Feedback , Proteins/genetics , Synthetic Biology/methods
3.
Bioinform Biol Insights ; 15: 11779322211025876, 2021.
Article in English | MEDLINE | ID: mdl-34220199

ABSTRACT

SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host's translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.

SELECTION OF CITATIONS
SEARCH DETAIL
...