Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899426

ABSTRACT

Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes a devastating canker disease in yellow-fleshed kiwifruit (Actinidia chinensis). The effector HopZ5, which is present in all isolates of Psa3 causing global outbreaks of pandemic kiwifruit canker disease, triggers immunity in Nicotiana benthamiana and is not recognised in susceptible A. chinensis cultivars. In a search for N. benthamiana nonhost resistance genes against HopZ5, we found that the nucleotide-binding leucine-rich repeat receptor NbPTR1 recognised HopZ5. RPM1-interacting protein 4 orthologues from N. benthamiana and A. chinensis formed a complex with NbPTR1 and HopZ5 activity was able to disrupt this interaction. No functional orthologues of NbPTR1 were found in A. chinensis. NbPTR1 transformed into Psa3-susceptible A. chinensis var. chinensis 'Hort16A' plants introduced HopZ5-specific resistance against Psa3. Altogether, this study suggested that expressing NbPTR1 in Psa3-susceptible kiwifruit is a viable approach to acquiring resistance to Psa3 and it provides valuable information for engineering resistance in otherwise susceptible kiwifruit genotypes.

2.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834112

ABSTRACT

The YopJ group of acetylating effectors from phytopathogens of the genera Pseudomonas and Ralstonia have been widely studied to understand how they modify and suppress their host defence targets. In contrast, studies on a related group of effectors, the Eop1 group, lag far behind. Members of the Eop1 group are widely present in the Erwinia-Pantoea clade of Gram-negative bacteria, which contains phytopathogens, non-pathogens and potential biocontrol agents, implying that they may play an important role in agroecological or pathological adaptations. The lack of research in this group of YopJ effectors has left a significant knowledge gap in their functioning and role. For the first time, we perform a comparative analysis combining AlphaFold modelling, in planta transient expressions and targeted mutational analyses of the Eop1 group effectors from the Erwinia-Pantoea clade, to help elucidate their likely activity and mechanism(s). This integrated study revealed several new findings, including putative binding sites for inositol hexakisphosphate and acetyl coenzyme A and newly postulated target-binding domains, and raises questions about whether these effectors function through a catalytic triad mechanism. The results imply that some Eop1s may use a catalytic dyad acetylation mechanism that we found could be promoted by the electronegative environment around the active site.


Subject(s)
Erwinia amylovora , Erwinia , Pantoea , Pseudomonas , Dickeya , Acetyl Coenzyme A , Plant Diseases/microbiology
3.
Int J Mol Sci ; 24(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108744

ABSTRACT

Environmental extremes, such as drought and flooding, are becoming more common with global warming, resulting in significant crop losses. Understanding the mechanisms underlying the plant water stress response, regulated by the abscisic acid (ABA) pathway, is crucial to building resilience to climate change. Potted kiwifruit plants (two cultivars) were exposed to contrasting watering regimes (water logging and no water). Root and leaf tissues were sampled during the experiments to measure phytohormone levels and expression of ABA pathway genes. ABA increased significantly under drought conditions compared with the control and waterlogged plants. ABA-related gene responses were significantly greater in roots than leaves. ABA responsive genes, DREB2 and WRKY40, showed the greatest upregulation in roots with flooding, and the ABA biosynthesis gene, NCED3, with drought. Two ABA-catabolic genes, CYP707A i and ii were able to differentiate the water stress responses, with upregulation in flooding and downregulation in drought. This study has identified molecular markers and shown that water stress extremes induced strong phytohormone/ABA gene responses in the roots, which are the key site of water stress perception, supporting the theory kiwifruit plants regulate ABA to combat water stress.


Subject(s)
Abscisic Acid , Plant Growth Regulators , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Dehydration/metabolism , Droughts , Stress, Physiological/genetics , Plant Proteins/metabolism , Plants/metabolism , Plant Leaves/metabolism , Gene Expression , Gene Expression Regulation, Plant
4.
New Phytol ; 238(4): 1605-1619, 2023 05.
Article in English | MEDLINE | ID: mdl-36856342

ABSTRACT

Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.


Subject(s)
Actinidia , Plant Diseases , Plant Diseases/microbiology , Bacteria , Virulence , Plant Immunity , Innate Immunity Recognition , Pseudomonas syringae , Bacterial Proteins
5.
Front Plant Sci ; 13: 952301, 2022.
Article in English | MEDLINE | ID: mdl-36160984

ABSTRACT

Defence phytohormone pathways evolved to recognize and counter multiple stressors within the environment. Salicylic acid responsive pathways regulate the defence response to biotrophic pathogens whilst responses to necrotrophic pathogens, herbivory, and wounding are regulated via jasmonic acid pathways. Despite their contrasting roles in planta, the salicylic acid and jasmonic acid defence networks share a common architecture, progressing from stages of biosynthesis, to modification, regulation, and response. The unique structure, components, and regulation of each stage of the defence networks likely contributes, in part, to the speed, establishment, and longevity of the salicylic acid and jasmonic acid signaling pathways in response to hormone treatment and various biotic stressors. Recent advancements in the understanding of the Arabidopsis thaliana salicylic acid and jasmonic acid signaling pathways are reviewed here, with a focus on how the structure of the pathways may be influencing the temporal regulation of the defence responses, and how biotic stressors and the many roles of salicylic acid and jasmonic acid in planta may have shaped the evolution of the signaling networks.

6.
Plant Cell ; 34(12): 4950-4972, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36130293

ABSTRACT

Gram-negative bacterial plant pathogens inject effectors into their hosts to hijack and manipulate metabolism, eluding surveillance at the battle frontier on the cell surface. The effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola functions as an ADP-ribosyl transferase that modifies RESISTANCE TO P. SYRINGAE PV MACULICOLA1 (RPM1)-INTERACTING PROTEIN4 (RIN4), leading to the activation of Arabidopsis thaliana (Arabidopsis) resistance protein RPM1. Here we confirmed the ADP-ribosyl transferase activity of another bacterial effector, AvrRpm2Psa from P. syringae pv. actinidiae, via sequential inoculation of Pseudomonas strain Pto DC3000 harboring avrRpm2Psa following Agrobacterium-mediated transient expression of RIN4 in Nicotiana benthamiana. We conducted mutational analysis in combination with mass spectrometry to locate the target site in RIN4. A conserved glutamate residue (Glu156) is the most likely target for AvrRpm2Psa, as only Glu156 could be ADP-ribosylated to activate RPM1 among candidate target residues identified from the MS/MS fragmentation spectra. Soybean (Glycine max) and snap bean (Phaseolus vulgaris) RIN4 homologs without glutamate at the positions corresponding to Glu156 of Arabidopsis RIN4 are not ADP-ribosylated by bacterial AvrRpm2Psa. In contrast to the effector AvrB, AvrRpm2Psa does not require the phosphorylation of Thr166 in RIN4 to activate RPM1. Therefore, separate biochemical reactions by different pathogen effectors may trigger the activation of the same resistance protein via distinct modifications of RIN4.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Glutamic Acid , Tandem Mass Spectrometry , Carrier Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Pseudomonas syringae/metabolism , Glycine max/metabolism , Transferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology
7.
Plant Dis ; 105(6): 1748-1757, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33206018

ABSTRACT

Pseudomonas syringae pv. actinidiae is the etiological agent of kiwifruit canker disease, causing severe economic losses in kiwifruit production areas around the world. Rapid diagnosis, understanding of bacterial virulence, and rate of infection in kiwifruit cultivars are important in applying effective measures of disease control. P. syringae pv. actinidiae load in kiwifruit is currently determined by a labor-intense colony counting method with no high-throughput and specific quantification method being validated. In this work, we used three alternative P. syringae pv. actinidiae quantification methods in two infected kiwifruit cultivars: start of growth time, quantitative PCR (qPCR), and droplet digital PCR (ddPCR). Method performance in each case was compared with the colony counting method. Methods were validated using calibration curves obtained with serial dilutions of P. syringae pv. actinidiae biovar 3 (Psa3) inoculum and standard growth curves obtained from kiwifruit samples infected with Psa3 inoculum. All three alternative methods showed high correlation (r > 0.85) with the colony counting method. qPCR and ddPCR were very specific, sensitive (5 × 102 CFU/cm2), highly correlated to each other (r = 0.955), and flexible, allowing for sample storage. The inclusion of a kiwifruit biomass marker increased the methods' accuracy. The qPCR method was efficient and allowed for high-throughput processing, and the ddPCR method showed highly accurate results but was more expensive and time consuming. While not ideal for high-throughput processing, ddPCR was useful in developing accurate standard curves for the qPCR method. The combination of the two methods is high-throughput, specific for Psa3 quantification, and useful for research studies (e.g., disease phenotyping and host-pathogen interactions).


Subject(s)
Actinidia , Pseudomonas syringae , Fruit , Plant Diseases , Pseudomonas syringae/genetics , Real-Time Polymerase Chain Reaction
8.
Plant J ; 102(4): 688-702, 2020 05.
Article in English | MEDLINE | ID: mdl-31849122

ABSTRACT

The type three effector AvrRpm1Pma from Pseudomonas syringae pv. maculicola (Pma) triggers an RPM1-mediated immune response linked to phosphorylation of RIN4 (RPM1-interacting protein 4) in Arabidopsis. However, the effector-resistance (R) gene interaction is not well established with different AvrRpm1 effectors from other pathovars. We investigated the AvrRpm1-triggered immune responses in Nicotiana species and isolated Rpa1 (Resistance to Pseudomonas syringae pv. actinidiae 1) via a reverse genetic screen in Nicotiana tabacum. Transient expression and gene silencing were performed in combination with co-immunoprecipitation and growth assays to investigate the specificity of interactions that lead to inhibition of pathogen growth. Two closely related AvrRpm1 effectors derived from Pseudomonas syringae pv. actinidiae biovar 3 (AvrRpm1Psa ) and Pseudomonas syringae pv. syringae strain B728a (AvrRpm1Psy ) trigger immune responses mediated by RPA1, a nucleotide-binding leucine-rich repeat protein with an N-terminal coiled-coil domain. In a display of contrasting specificities, RPA1 does not respond to AvrRpm1Pma , and correspondingly AvrRpm1Psa and AvrRpm1Psy do not trigger the RPM1-mediated response, demonstrating that separate R genes mediate specific immune responses to different AvrRpm1 effectors. AvrRpm1Psa co-immunoprecipitates with RPA1, and both proteins co-immunoprecipitate with RIN4. In contrast with RPM1, however, RPA1 was not activated by the phosphomimic RIN4T166D and silencing of RIN4 did not affect the RPA1 activity. Delivery of AvrRpm1Psa by Pseudomonas syringae pv. tomato (Pto) in combination with transient expression of Rpa1 resulted in inhibition of the pathogen growth in N. benthamiana. Psa growth was also inhibited by RPA1 in N. tabacum.


Subject(s)
Arabidopsis/genetics , Bacterial Proteins/immunology , Nicotiana/genetics , Plant Diseases/immunology , Plant Immunity , Proteins/metabolism , Pseudomonas syringae/immunology , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Leucine-Rich Repeat Proteins , Phosphorylation , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps , Proteins/genetics , Nicotiana/immunology , Nicotiana/microbiology
9.
Int J Mol Sci ; 21(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861935

ABSTRACT

APETALA2/ETHYLENE RESPONSE FACTOR transcription factors (AP2/ERFs) play crucial roles in adaptation to stresses such as those caused by pathogens, wounding and cold. Although their name suggests a specific role in ethylene signalling, some ERF members also co-ordinate signals regulated by other key plant stress hormones such as jasmonate, abscisic acid and salicylate. We analysed a set of ERF proteins from three divergent plant species for intrinsically disorder regions containing conserved segments involved in protein-protein interaction known as Molecular Recognition Features (MoRFs). Then we correlated the MoRFs identified with a number of known functional features where these could be identified. Our analyses suggest that MoRFs, with plasticity in their disordered surroundings, are highly functional and may have been shuffled between related protein families driven by selection. A particularly important role may be played by the alpha helical component of the structured DNA binding domain to permit specificity. We also present examples of computationally identified MoRFs that have no known function and provide a valuable conceptual framework to link both disordered and ordered structural features within this family to diverse function.


Subject(s)
Ethylenes/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plants/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Gene Expression Regulation, Plant , Models, Molecular , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/chemistry , Plants/genetics , Protein Interaction Domains and Motifs , Protein Interaction Maps , Stress, Physiological , Transcription Factors/chemistry , Transcription Factors/genetics
10.
BMC Res Notes ; 12(1): 63, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30691538

ABSTRACT

OBJECTIVE: Bacterial canker is a destructive disease of kiwifruit caused by the Gram-negative bacterium Pseudomonas syringae pv. actinidiae (Psa). To understand the disease-causing mechanism of Psa, a kiwifruit yeast two-hybrid cDNA library was constructed to identify putative host targets of the Psa Type Three Secreted Effector AvrPto5. RESULTS: In this study, we used the Mate & Plate™ yeast two-hybrid library method for constructing a kiwifruit cDNA library from messenger RNA of young leaves. The constructed library consisted of 2.15 × 106 independent clones with an average insert size of 1.52 kb. The screening of the kiwifruit yeast two-hybrid cDNA library with Psa AvrPto5 revealed the interaction of a V-type proton ATPase subunit-H, a proline rich-protein and heavy metal-associated isoprenylated plant protein 26. Among these, heavy metal-associated isoprenylated plant protein 26 showed a positive interaction with Psa AvrPto5 as both prey and bait.


Subject(s)
Actinidia , Bacterial Proteins , Fruit , Gene Library , Plant Diseases , Plant Leaves , Pseudomonas syringae , Yeasts
11.
BMC Genomics ; 19(1): 822, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30442113

ABSTRACT

BACKGROUND: Pseudomonas syringae is a widespread bacterial species complex that includes a number of significant plant pathogens. Amongst these, P. syringae pv. actinidiae (Psa) initiated a worldwide pandemic in 2008 on cultivars of Actinidia chinensis var. chinensis. To gain information about the expression of genes involved in pathogenicity we have carried out transcriptome analysis of Psa during the early stages of kiwifruit infection. RESULTS: Gene expression in Psa was investigated during the first five days after infection of kiwifruit plantlets, using RNA-seq. Principal component and heatmap analyses showed distinct phases of gene expression during the time course of infection. The first phase was an immediate transient peak of induction around three hours post inoculation (HPI) that included genes that code for a Type VI Secretion System and nutrient acquisition (particularly phosphate). This was followed by a significant commitment, between 3 and 24 HPI, to the induction of genes encoding the Type III Secretion System (T3SS) and Type III Secreted Effectors (T3SE). Expression of these genes collectively accounted for 6.3% of the bacterial transcriptome at this stage. There was considerable variation in the expression levels of individual T3SEs but all followed the same temporal expression pattern, with the exception of hopAS1, which peaked later in expression at 48 HPI. As infection progressed over the time course of five days, there was an increase in the expression of genes with roles in sugar, amino acid and sulfur transport and the production of alginate and colanic acid. These are both polymers that are major constituents of extracellular polysaccharide substances (EPS) and are involved in biofilm production. Reverse transcription-quantitative PCR (RT-qPCR) on an independent infection time course experiment showed that the expression profile of selected bacterial genes at each infection phase correlated well with the RNA-seq data. CONCLUSIONS: The results from this study indicate that there is a complex remodeling of the transcriptome during the early stages of infection, with at least three distinct phases of coordinated gene expression. These include genes induced during the immediate contact with the host, those involved in the initiation of infection, and finally those responsible for nutrient acquisition.


Subject(s)
Actinidia/microbiology , Gene Expression Regulation, Bacterial , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Gene Expression Profiling/methods , Genes, Bacterial/genetics , Plant Diseases/microbiology , Time Factors , Virulence/genetics
12.
Mol Plant Microbe Interact ; 31(11): 1179-1191, 2018 11.
Article in English | MEDLINE | ID: mdl-30204065

ABSTRACT

The AvrRpt2EA effector protein of Erwinia amylovora is important for pathogen recognition in the fire blight-resistant crabapple Malus × robusta 5; however, little is known about its role in susceptible apples. To study its function in planta, we expressed a plant-optimized version of AvrRpt2EA driven by a heat shock-inducible promoter in transgenic plants of the fire blight-susceptible cultivar Pinova. After induced expression of AvrRpt2EA, transgenic lines showed shoot necrosis and browning of older leaves, with symptoms similar to natural fire blight infections. Transgenic expression of this effector protein resulted in an increase in the expression of the salicylic acid (SA)-responsive PR-1 gene but, also, in the levels of SA and its derivatives, with diverse kinetics in leaves of different ages. In contrast, no increase of expression levels of VSP2 paralogs, used as marker genes for the activation of the jasmonic acid (JA)-dependent defense pathway, could be detected, which is in agreement with metabolic profiling of JA and its derivatives. Our work demonstrates that AvrRpt2EA acts as a virulence factor and induces the formation of SA and SA-dependent systemic acquired resistance.


Subject(s)
Bacterial Proteins/metabolism , Erwinia amylovora/genetics , Malus/microbiology , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Bacterial Proteins/genetics , Cyclopentanes/metabolism , Disease Resistance , Erwinia amylovora/pathogenicity , Erwinia amylovora/physiology , Host-Pathogen Interactions , Malus/immunology , Oxylipins/metabolism , Plant Diseases/immunology , Plant Leaves/immunology , Plant Leaves/microbiology , Salicylic Acid/metabolism , Virulence Factors
13.
Int J Mol Sci ; 19(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29518008

ABSTRACT

Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points.


Subject(s)
Epigenesis, Genetic , Host-Pathogen Interactions , Proteome/metabolism , Proteostasis Deficiencies/metabolism , Animals , Humans , Protein Processing, Post-Translational , Proteostasis Deficiencies/genetics
14.
Sci Rep ; 7(1): 3557, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620210

ABSTRACT

Type-III secreted effectors (T3Es) play critical roles during bacterial pathogenesis in plants. Plant recognition of certain T3Es can trigger defence, often accompanied by macroscopic cell death, termed the hypersensitive response (HR). Economically important species of kiwifruit are susceptible to Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit bacterial canker. Although Psa is non-pathogenic in Arabidopsis thaliana, we observed that a T3E, HopZ5 that is unique to a global outbreak clade of Psa, triggers HR and defence in Arabidopsis accession Ct-1. Ws-2 and Col-0 accessions are unable to produce an HR in response to Pseudomonas-delivered HopZ5. While Ws-2 is susceptible to virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 carrying HopZ5, Col-0 is resistant despite the lack of an HR. We show that HopZ5, like other members of the YopJ superfamily of acetyltransferases that it belongs to, autoacetylates lysine residues. Through comparisons to other family members, we identified an acetyltransferase catalytic activity and demonstrate its requirement for triggering defence in Arabidopsis and Nicotiana species. Collectively, data herein indicate that HopZ5 is a plasma membrane-localized acetyltransferase with autoacetylation activity required for avirulence.


Subject(s)
Acetyltransferases/immunology , Antigens, Bacterial/immunology , Arabidopsis/immunology , Host-Pathogen Interactions/immunology , Hypersensitivity/immunology , Arabidopsis/microbiology , Cell Death/genetics , Cell Death/immunology , Cell Membrane/metabolism , Hypersensitivity/metabolism , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Pseudomonas syringae/immunology , Pseudomonas syringae/metabolism , Type III Secretion Systems/immunology
15.
Plant Methods ; 13: 32, 2017.
Article in English | MEDLINE | ID: mdl-28465712

ABSTRACT

BACKGROUND: PTI and ETI are the two major defence mechanisms in plants. ETI is triggered by the detection of pathogen effectors, or their activity, in the plant cell and most of the time involves internal receptors known as resistance (R) genes. An increasing number of R genes responsible for recognition of specific effectors have been characterised over the years; however, methods to identify R genes are often challenging and cannot always be translated to crop plants. RESULTS: We present a novel method to identify R genes responsible for the recognition of specific effectors that trigger a hypersensitive response (HR) in Nicotiana benthamiana. This method is based on the genome-wide identification of most of the potential R genes of N. benthamiana and a systematic silencing of these potential R genes in a simple transient expression assay. A hairpin-RNAi library was constructed covering 345 R gene candidates of N. benthamiana. This library was then validated using several previously described R genes. Our approach indeed confirmed that Prf, NRC2a/b and NRC3 are required for the HR that is mediated in N. benthamiana by Pto/avrPto (prf, NRC2a/b and NRC3) and by Cf4/avr4 (NRC2a/b and NRC3). We also confirmed that NRG1, in association with N, is required for the Tobacco Mosaic Virus (TMV)-mediated HR in N. benthamiana. CONCLUSION: We present a novel approach combining bioinformatics, multiple-gene silencing and transient expression assay screening to rapidly identify one-to-one relationships between pathogen effectors and host R genes in N. benthamiana. This approach allowed the identification of previously described R genes responsible for detection of avirulence determinants from Pseudomonas, Cladosporium and TMV, demonstrating that the method could be applied to any effectors/proteins originating from a broad range of plant pathogens that trigger an HR in N. benthamiana. Moreover, with the increasing availability of genome sequences from model and crop plants and pathogens, this approach could be implemented in other plants, accelerating the process of identification and characterization of novel resistance genes.

16.
Genome Biol Evol ; 9(4): 932-944, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28369338

ABSTRACT

Recurring epidemics of kiwifruit (Actinidia spp.) bleeding canker disease are caused by Pseudomonas syringae pv. actinidiae (Psa). In order to strengthen understanding of population structure, phylogeography, and evolutionary dynamics, we isolated Pseudomonas from cultivated and wild kiwifruit across six provinces in China. Based on the analysis of 80 sequenced Psa genomes, we show that China is the origin of the pandemic lineage but that strain diversity in China is confined to just a single clade. In contrast, Korea and Japan harbor strains from multiple clades. Distinct independent transmission events marked introduction of the pandemic lineage into New Zealand, Chile, Europe, Korea, and Japan. Despite high similarity within the core genome and minimal impact of within-clade recombination, we observed extensive variation even within the single clade from which the global pandemic arose.


Subject(s)
Actinidia/microbiology , Phylogeography , Plant Diseases/genetics , Pseudomonas syringae/genetics , Actinidia/genetics , China , Fruit/microbiology , Genetic Variation , New Zealand , Pandemics , Plant Diseases/microbiology , Pseudomonas syringae/pathogenicity
17.
PLoS One ; 12(3): e0172790, 2017.
Article in English | MEDLINE | ID: mdl-28249011

ABSTRACT

Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit canker, is one of the most devastating plant diseases of recent times. We have generated two mini-Tn5-based random insertion libraries of Psa ICMP 18884. The first, a 'phenotype of interest' (POI) library, consists of 10,368 independent mutants gridded into 96-well plates. By replica plating onto selective media, the POI library was successfully screened for auxotrophic and motility mutants. Lipopolysaccharide (LPS) biosynthesis mutants with 'Fuzzy-Spreader'-like morphologies were also identified through a visual screen. The second, a 'mutant of interest' (MOI) library, comprises around 96,000 independent mutants, also stored in 96-well plates, with approximately 200 individuals per well. The MOI library was sequenced on the Illumina MiSeq platform using Transposon-Directed Insertion site Sequencing (TraDIS) to map insertion sites onto the Psa genome. A grid-based PCR method was developed to recover individual mutants, and using this strategy, the MOI library was successfully screened for a putative LPS mutant not identified in the visual screen. The Psa chromosome and plasmid had 24,031 and 1,236 independent insertion events respectively, giving insertion frequencies of 3.65 and 16.6 per kb respectively. These data suggest that the MOI library is near saturation, with the theoretical probability of finding an insert in any one chromosomal gene estimated to be 97.5%. However, only 47% of chromosomal genes had insertions. This surprisingly low rate cannot be solely explained by the lack of insertions in essential genes, which would be expected to be around 5%. Strikingly, many accessory genes, including most of those encoding type III effectors, lacked insertions. In contrast, 94% of genes on the Psa plasmid had insertions, including for example, the type III effector HopAU1. These results suggest that some chromosomal sites are rendered inaccessible to transposon insertion, either by DNA-binding proteins or by the architecture of the nucleoid.


Subject(s)
Actinidia/microbiology , DNA Transposable Elements , Fruit/microbiology , INDEL Mutation , Mutagenesis, Insertional , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Gene Library
18.
Genom Data ; 7: 281-3, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26981426

ABSTRACT

Both commercial and experimental genotypes of kiwifruit (Actinidia spp.) exhibit large differences in response to insect pests. An understanding of the vine's physiological response to insect feeding and its genetic basis will be important in assisting the development of varieties with acceptable levels of pest resistance. This experiment describes transcriptome changes observed in the bark of kiwifruit 2 and 7 days after the commencement of feeding by the armored scale insect pest, Hemiberlesia lataniae. Using a cDNA microarray consisting of 17,512 unigenes, we measured transcriptome changes and analyzed these into functional ontology categories using MapMan. Results are available in the GEO database GSE73922 and are described fully in Ref. Hill et al. (2015) [1]. After 7 days, transcripts associated with photosynthesis were down-regulated and secondary metabolism was up-regulated. Differential expression of transcripts associated with stress response was consistent with a defense response involving both effector and herbivore-triggered immunities, with predominant involvement of the salicylic acid phytohormonal pathway. This hypothesis was supported by the results of two laboratory experiments. The methods described here could be further adapted and applied to the study of plant responses to a wide range of sessile sucking pests.

19.
PLoS One ; 10(11): e0141664, 2015.
Article in English | MEDLINE | ID: mdl-26571404

ABSTRACT

The kiwifruit cultivar Actinidia chinensis 'Hort16A' is resistant to the polyphagous armoured scale insect pest Hemiberlesia lataniae (Hemiptera: Diaspididae). A cDNA microarray consisting of 17,512 unigenes selected from over 132,000 expressed sequence tags (ESTs) was used to measure the transcriptomic profile of the A. chinensis 'Hort16A' canes in response to a controlled infestation of H. lataniae. After 2 days, 272 transcripts were differentially expressed. After 7 days, 5,284 (30%) transcripts were differentially expressed. The transcripts were grouped into 22 major functional categories using MapMan software. After 7 days, transcripts associated with photosynthesis (photosystem II) were significantly down-regulated, while those associated with secondary metabolism were significantly up-regulated. A total of 643 transcripts associated with response to stress were differentially expressed. This included biotic stress-related transcripts orthologous with pathogenesis related proteins, the phenylpropanoid pathway, NBS-LRR (R) genes, and receptor-like kinase-leucine rich repeat signalling proteins. While transcriptional studies are not conclusive in their own right, results were suggestive of a defence response involving both ETI and PTI, with predominance of the SA signalling pathway. Exogenous application of an SA-mimic decreased H. lataniae growth on A. chinensis 'Hort16A' plants in two laboratory experiments.


Subject(s)
Actinidia/metabolism , Hemiptera/pathogenicity , Herbivory , Plant Bark , Plant Immunity , Transcriptome , Actinidia/immunology , Animals , DNA, Complementary/metabolism , Data Mining , Expressed Sequence Tags , Female , Gene Expression Profiling , Gene Expression Regulation, Plant , Oligonucleotide Array Sequence Analysis , Photosynthesis , Polymerase Chain Reaction , Signal Transduction , Software
20.
Plant J ; 84(2): 417-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26358530

ABSTRACT

The molecular genetic mechanisms underlying fruit size remain poorly understood in perennial crops, despite size being an important agronomic trait. Here we show that the expression level of a microRNA gene (miRNA172) influences fruit size in apple. A transposon insertional allele of miRNA172 showing reduced expression associates with large fruit in an apple breeding population, whereas over-expression of miRNA172 in transgenic apple significantly reduces fruit size. The transposon insertional allele was found to be co-located with a major fruit size quantitative trait locus, fixed in cultivated apples and their wild progenitor species with relatively large fruit. This finding supports the view that the selection for large size in apple fruit was initiated prior to apple domestication, likely by large mammals, before being subsequently strengthened by humans, and also helps to explain why signatures of genetic bottlenecks and selective sweeps are normally weaker in perennial crops than in annual crops.


Subject(s)
Fruit/genetics , Malus/genetics , MicroRNAs/genetics , Alleles
SELECTION OF CITATIONS
SEARCH DETAIL
...