Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(4): 109527, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38585658

ABSTRACT

Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.

2.
Front Neurosci ; 17: 1248936, 2023.
Article in English | MEDLINE | ID: mdl-37732302

ABSTRACT

Introduction: Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods: To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results: Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion: These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.

3.
Neuroscience ; 477: 63-75, 2021 11 21.
Article in English | MEDLINE | ID: mdl-34634426

ABSTRACT

Intense noise exposure is a leading cause of hearing loss, which results in degraded speech sound discrimination ability, particularly in noisy environments. The development of an animal model of speech discrimination deficits due to noise induced hearing loss (NIHL) would enable testing of potential therapies to improve speech sound processing. Rats can accurately detect and discriminate human speech sounds in the presence of quiet and background noise. Further, it is known that profound hearing loss results in functional deafness in rats. In this study, we generated rats with a range of impairments which model the large range of hearing impairments observed in patients with NIHL. One month after noise exposure, we stratified rats into three distinct deficit groups based on their auditory brainstem response (ABR) thresholds. These groups exhibited markedly different behavioral outcomes across a range of tasks. Rats with moderate hearing loss (30 dB shifts in ABR threshold) were not impaired in speech sound detection or discrimination. Rats with severe hearing loss (55 dB shifts) were impaired at discriminating speech sounds in the presence of background noise. Rats with profound hearing loss (70 dB shifts) were unable to detect and discriminate speech sounds above chance level performance. Across groups, ABR threshold accurately predicted behavioral performance on all tasks. This model of long-term impaired speech discrimination in noise, demonstrated by the severe group, mimics the most common clinical presentation of NIHL and represents a useful tool for developing and improving interventions to target restoration of hearing.


Subject(s)
Hearing Loss, Noise-Induced , Speech Perception , Animals , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Hearing , Humans , Noise/adverse effects , Rats
4.
Exp Neurol ; 289: 21-30, 2017 03.
Article in English | MEDLINE | ID: mdl-27988257

ABSTRACT

Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter-train intervals, and pulse widths. Brief 0.5s trains of VNS drive rapid, phasic firing of LC neurons at 0.1mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse-locked neural activity in the Me5 at current levels above 1.2mA. These results provide insight into VNS-evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy.


Subject(s)
Locus Coeruleus/cytology , Neurons/physiology , Vagus Nerve/physiology , Action Potentials/physiology , Afferent Pathways/physiology , Analysis of Variance , Animals , Biophysics , Female , Rats , Rats, Sprague-Dawley , Vagus Nerve Stimulation
5.
Brain Stimul ; 8(3): 637-44, 2015.
Article in English | MEDLINE | ID: mdl-25732785

ABSTRACT

BACKGROUND: Individuals with communication disorders, such as aphasia, exhibit weak auditory cortex responses to speech sounds and language impairments. Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with tones or tone trains can enhance both the spectral and temporal processing of sounds in auditory cortex, and can be used to reverse pathological primary auditory cortex (A1) plasticity in a rodent model of chronic tinnitus. OBJECTIVE/HYPOTHESIS: We predicted that pairing VNS with speech sounds would strengthen the A1 response to the paired speech sounds. METHODS: The speech sounds 'rad' and 'lad' were paired with VNS three hundred times per day for twenty days. A1 responses to both paired and novel speech sounds were recorded 24 h after the last VNS pairing session in anesthetized rats. Response strength, latency and neurometric decoding were compared between VNS speech paired and control rats. RESULTS: Our results show that VNS paired with speech sounds strengthened the auditory cortex response to the paired sounds, but did not strengthen the amplitude of the response to novel speech sounds. Responses to the paired sounds were faster and less variable in VNS speech paired rats compared to control rats. Neural plasticity that was specific to the frequency, intensity, and temporal characteristics of the paired speech sounds resulted in enhanced neural detection. CONCLUSION: VNS speech sound pairing provides a novel method to enhance speech sound processing in the central auditory system. Delivery of VNS during speech therapy could improve outcomes in individuals with receptive language deficits.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity/physiology , Phonetics , Vagus Nerve Stimulation , Acoustic Stimulation , Animals , Female , Hearing Disorders/therapy , Humans , Rats , Rats, Sprague-Dawley , Speech Disorders/therapy
6.
Nature ; 470(7332): 101-4, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21228773

ABSTRACT

Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.


Subject(s)
Neuronal Plasticity/physiology , Tinnitus/physiopathology , Tinnitus/therapy , Acoustic Stimulation , Animals , Auditory Perception/physiology , Behavior, Animal/physiology , Disease Models, Animal , Electric Stimulation , Female , Models, Neurological , Noise/adverse effects , Rats , Rats, Sprague-Dawley , Tinnitus/etiology , Tinnitus/pathology , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...