Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 26(2): e16549, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38196372

ABSTRACT

Microplastics affect soil functions depending on drought conditions. However, how their combined effect influences soil fungi and their linkages with ecosystem functions is still unknown. To address this, we used rhizosphere soil from a previous experiment in which we employed microplastic fibres addition and drought in a factorial design, and evaluated their effects on soil fungal communities. Microplastics decreased soil fungal richness under well-watered conditions, likely linked to microplastics leaching toxic substances into the soil, and microplastic effects on root fineness. Under drought, by contrast, microplastics increased pathogen and total fungal richness, likely related to microplastic positive effects on soil properties, such as water holding capacity, porosity or aggregation. Soil fungal richness was the attribute most affected by microplastics and drought. Microplastics altered the relationships between soil fungi and ecosystem functions to the point that many of them flipped from positive to negative or disappeared. The combined effect of microplastics and drought on fungal richness mitigated their individual negative effect (antagonism), suggesting that changes in soil water conditions may alter the action mode of microplastics in soil. Microplastic leaching of harmful substances can be mitigated under drought, while the improvement of soil properties by microplastics may alleviate such drought conditions.


Subject(s)
Ecosystem , Mycobiome , Microplastics , Plastics , Soil , Droughts , Soil Microbiology , Water/analysis
2.
ISME Commun ; 2(1): 2, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-37938271

ABSTRACT

Colonization of terrestrial environments by filamentous fungi relies on their ability to form networks that can forage for and connect resource patches. Despite the importance of these networks, ecologists rarely consider network features as functional traits because their measurement and interpretation are conceptually and methodologically difficult. To address these challenges, we have developed a pipeline to translate images of fungal mycelia, from both micro- and macro-scales, to weighted network graphs that capture ecologically relevant fungal behaviour. We focus on four properties that we hypothesize determine how fungi forage for resources, specifically: connectivity; relative construction cost; transport efficiency; and robustness against attack by fungivores. Constrained ordination and Pareto front analysis of these traits revealed that foraging strategies can be distinguished predominantly along a gradient of connectivity for micro- and macro-scale mycelial networks that is reminiscent of the qualitative 'phalanx' and 'guerilla' descriptors previously proposed in the literature. At one extreme are species with many inter-connections that increase the paths for multidirectional transport and robustness to damage, but with a high construction cost; at the other extreme are species with an opposite phenotype. Thus, we propose this approach represents a significant advance in quantifying ecological strategies for fungi using network information.

3.
FEMS Microbiol Ecol ; 97(5)2021 04 29.
Article in English | MEDLINE | ID: mdl-33861336

ABSTRACT

We report on a study that aimed at establishing a large soil-fungal culture collection spanning a wide taxonomic diversity and systematically screening the collection for bacterial associations. Fungal cultures were isolated from soil samples obtained from a natural grassland in eastern Germany and bacterial associations were assessed by PCR-amplification and sequencing of bacterial 16S rRNA. In addition, intraspecies genetic diversities of a subset of the isolated species were estimated by double-digest restriction associated DNA sequencing. A total of 688 fungal cultures, representing at least 106 fungal species from 36 different families, were obtained and even though clonal isolates were identified in almost all fungal species subjected to ddRAD-seq, relatively high genetic diversities could be observed in some of the isolated species. A total of 69% of the fungal isolates in our collection were found to be associated with bacteria and the most commonly identified bacterial genera were Pelomonas, Enterobacter and Burkholderia. Our results indicate that bacterial associations commonly occur in soil fungi, even if antibiotics are being applied during the isolation process, and provide a basis for the use of our culture collection in ecological experiments that want to acknowledge the importance of intraspecies genetic diversity.


Subject(s)
Grassland , Soil Microbiology , Bacteria/genetics , DNA, Bacterial/genetics , Fungi/genetics , Germany , Humans , RNA, Ribosomal, 16S/genetics , Soil
4.
ISME J ; 13(7): 1639-1646, 2019 07.
Article in English | MEDLINE | ID: mdl-30742058

ABSTRACT

Stable soils provide valuable ecosystem services and mechanical soil stability is enhanced by the presence of arbuscular mycorrhizal fungi (AMF). Soil aggregation, which is the major driver of mechanical soil stability, is often treated as a static phenomenon, even though aggregate turnover is continually ongoing. In fact, some breakdown of macroaggregates is necessary to allow new aggregate formation and inclusion of new organic matter into microaggregates. We determined how aggregate turnover times were affected by AMF by tracking movement of rare earth elements (REE), applied as their immobile oxides, between aggregate size classes, and using X-ray fluorescence microscopy to spatially localize REEs in a sample of aggregates. Here we show that AMF increased large macroaggregate formation and slowed down disintegration of large and small macroaggregates. Microaggregate turnover was increased in the presence of AMF. Internal aggregate organization suggested that although formation of microaggregates by accretion of soil to particulate organic matter is common, it is not the only mechanism in operation.


Subject(s)
Mycorrhizae/metabolism , Soil Microbiology , Soil/chemistry , Carbon/metabolism , Ecosystem , Fungi/growth & development , Mycorrhizae/growth & development
5.
Oecologia ; 179(1): 249-59, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25964063

ABSTRACT

Biotic plant-soil interactions and land-use intensity are known to affect plant individual fitness as well as competitiveness and therefore plant-species abundances in communities. Therefore, a link between soil biota and land-use intensity on local abundance of plant species in grasslands can be expected. In two greenhouse experiments, we investigated the effects of soil biota from grassland sites differing in land-use intensity on three grass species that vary in local abundances along this land-use gradient. We were interested in those soil-biota effects that are associated with land-use intensity, and whether these effects act directly or indirectly. Therefore, we grew the three plant species in two separate experiments as single individuals and in mixtures and compared their performance. As single plants, all three grasses showed a similar performance with and without soil biota. In contrast, in mixtures growth of the species in response to the presence or absence of soil biota differed. This resulted in different soil-biota effects that tend to correspond with patterns of species-specific abundances in the field for two of the three species tested. Our results highlight the importance of indirect interactions between plants and soil microorganisms and suggest that combined effects of soil biota and plant-plant interactions are involved in structuring plant communities. In conclusion, our experiments suggest that soil biota may have the potential to alter effects of plant-plant interactions and therefore influence plant-species abundances and diversity in grasslands.


Subject(s)
Biota , Grassland , Poaceae/growth & development , Soil Microbiology , Biodiversity , Ecosystem , Germany , Species Specificity
6.
Ecology ; 93(5): 1115-24, 2012 May.
Article in English | MEDLINE | ID: mdl-22764497

ABSTRACT

In spite of the controversy that they have generated, neutral models provide ecologists with powerful tools for creating dynamic predictions about beta-diversity in ecological communities. Ecologists can achieve an understanding of the assembly rules operating in nature by noting when and how these predictions are met or not met. This is particularly valuable for those groups of organisms that are challenging to study under natural conditions (e.g., bacteria and fungi). Here, we focused on arbuscular mycorrhizal fungal (AMF) communities and performed an extensive literature search that allowed us to synthesize the information in 19 data sets with the minimal requisites for creating a null hypothesis in terms of community dissimilarity expected under neutral dynamics. In order to achieve this task, we calculated the first estimates of neutral parameters for several AMF communities from different ecosystems. Communities were shown either to be consistent with neutrality or to diverge or converge with respect to the levels of compositional dissimilarity expected under neutrality. These data support the hypothesis that divergence occurs in systems where the effect of limited dispersal is overwhelmed by anthropogenic disturbance or extreme biological and environmental heterogeneity, whereas communities converge when systems have the potential for niche divergence within a relatively homogeneous set of environmental conditions. Regarding the study cases that were consistent with neutrality, the sampling designs employed may have covered relatively homogeneous environments in which the effects of dispersal limitation overwhelmed minor differences among AMF taxa that would lead to environmental filtering. Using neutral models we showed for the first time for a soil microbial group the conditions under which different assembly processes may determine different patterns of beta-diversity. Our synthesis is an important step showing how the application of general ecological theories to a model microbial taxon has the potential to shed light on the assembly and ecological dynamics of communities.


Subject(s)
Biodiversity , Mycorrhizae/classification , Mycorrhizae/genetics , Models, Biological , Soil Microbiology
7.
New Phytol ; 164(2): 365-373, 2004 Nov.
Article in English | MEDLINE | ID: mdl-33873560

ABSTRACT

• Arbuscular mycorrhizal fungi (AMF) and roots mediate soil stabilization, although the mechanisms and how their interactions affect soil stabilization are not known. We tested the effects of specific plant-fungus combinations on aggregate stabilization, and whether hyphal length and root biomass determine stabilization, predicting that fungi producing more hyphae, and plants with higher root biomasses, would better stabilize soils. • The percentage of water-stable aggregates (%WSA1-2 mm ), hyphal lengths, and root biomass were measured from a five AMF × nine plant factorial experiment. Arbuscular mycorrhizal fungi with greater extradical mycelium production were represented by the Gigasporaceae and plants of high root biomass by grasses. Other taxa represented lower hyphal lengths and root biomass. • An interaction between symbionts with respect to %WSA1-2 mm was observed. Root biomass and total hyphal lengths were not positively correlated with %WSA. Combinations of grasses with Gigasporaceae fungi had the lowest %WSA. • Mechanisms underlying aggregation were not elucidated by measuring root biomass and total hyphal lengths alone, suggesting other physiological or architectural mechanisms may be responsible.

8.
Microb Ecol ; 46(2): 200-15, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14708745

ABSTRACT

The hyporheic zone of a river is characterized by being nonphotic, exhibiting chemical/redox gradients, and having a heterotrophic food web based on the consumption of organic carbon entrained from surface waters. Hyporheic microbial communities constitute the base of food webs in these environments and are important for maintaining a functioning lotic ecosystem. While microbial communities of rivers dominated by fine-grained sediments are relatively well studied, little is known about the structure and seasonal dynamics of microbial communities inhabiting the predominantly gravel and cobble hyporheic zones of rivers of the western United States. Here, we present the first molecular analysis of hyporheic microbial communities of three different stream types (based on mean base discharge, substratum type, and drainage area), in Montana. Utilizing 16S rDNA phylogeny, DGGE pattern analysis, and qPCR, we have analyzed the prokaryotic communities living on the 1.7 to 2.36 mm grain-size fraction of hyporheic sediments from three separate riffles in each stream. DGGE analysis showed clear seasonal community patterns, indicated similar community composition between different riffles within a stream (95.6-96.6% similarity), and allowed differentiation between communities in different streams. Each river supported a unique complement of species; however, several phylogenetic groups were conserved between all three streams including Pseudomonads and members of the genera Aquabacterium, Rhodoferax, Hyphomicrobium, and Pirellula. Each group showed pronounced seasonal trends in abundance, with peaks during the Fall. The Hyphomicrobium group was numerically dominant throughout the year in all three streams. This work provides a framework for investigating the effects of various environmental factors and anthropogenic effects on microbial communities inhabiting the hyporheic zone.


Subject(s)
Food Chain , Hyphomicrobium , Rhizobium , Water Microbiology , DNA, Bacterial/analysis , Phylogeny , Polymerase Chain Reaction , Population Dynamics , RNA, Ribosomal, 16S/analysis , Rivers , Seasons , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...