Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202400967, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830830

ABSTRACT

Solid-supported amines having low molecular weight branched poly(ethylenimine) (PEI) physically impregnated into porous solid supports are promising adsorbents for CO2 capture. Co-impregnating short-chain poly(ethylene glycol) (PEG) together with PEI alters the performance of the adsorbent, delivering improved amine efficiency (AE, mol CO2 sorbed / mol N) and faster CO2 uptake rates. To uncover the physical basis for this improved gas capture performance, we probed the distribution and mobility of the polymers in the pores via small angle neutron scattering (SANS), solid-state NMR, and molecular dynamic (MD) simulation studies. SANS and MD simulations reveal that PEG displaces wall-bound PEI, making amines more accessible for CO2 sorption. Solid-state NMR and MD simulation suggest intercalation of PEG into PEI domains, separating PEI domains and reducing amine-amine interactions, providing potential PEG-rich and amine-poor interfacial domains that bind CO2 weakly via physisorption while providing facile pathways for CO2 diffusion. Contrary to a prior literature hypothesis, no evidence is obtained for PEG facilitating PEI mobility in solid supports. Instead, the data suggest that PEG chains coordinate to PEI, form larger bodies with reduced mobility compared to PEI alone. We also demonstrate promising CO2 uptake and desorption kinetics at varied temperatures, given by favorable amine distribution.

2.
Sci Adv ; 10(16): eadk2350, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640239

ABSTRACT

Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.

3.
ACS Appl Mater Interfaces ; 16(1): 1404-1415, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109480

ABSTRACT

Zeolites, silica-supported amines, and metal-organic frameworks (MOFs) have been demonstrated as promising adsorbents for direct air CO2 capture (DAC), but the shaping and structuring of these materials into sorbent modules for practical processes have been inadequately investigated compared to the extensive research on powder materials. Furthermore, there have been relatively few studies reporting the DAC performance of sorbent contactors under cold, subambient conditions (temperatures below 20 °C). In this work, we demonstrate the successful fabrication of adsorbent monoliths composed of cellulose acetate (CA) and adsorbent particles such as zeolite 13X and MOF MIL-101(Cr) by a 3D printing technique: solution-based additive manufacturing (SBAM). These monoliths feature interpenetrated macroporous polymeric frameworks in which microcrystals of zeolite 13X or MIL-101(Cr) are evenly distributed, highlighting the versatility of SBAM in fabricating monoliths containing sorbents with different particle sizes and density. Branched poly(ethylenimine) (PEI) is successfully loaded into the CA/MIL-101(Cr) monoliths to impart CO2 uptakes of 1.05 mmol gmonolith-1 at -20 °C and 400 ppm of CO2. Kinetic analysis shows that the CO2 sorption kinetics of PEI-loaded MIL-101(Cr) sorbents are not compromised in the monoliths compared to the powder sorbents. Importantly, these monoliths exhibit promising working capacities (0.95 mmol gmonolith-1) over 14 temperature swing cycles with a moderate regeneration temperature of 60 °C. Dynamic breakthrough experiments at 25 °C under dry conditions reveal a CO2 uptake capacity of 0.60 mmol gmonolith-1, which further increases to 1.05 and 1.43 mmol gmonolith-1 at -20 °C under dry and humid (70% relative humidity) conditions, respectively. Our work showcases the successful implementation of SBAM in making DAC sorbent monoliths with notable CO2 capture performance over a wide range of sorption temperatures, suggesting that SBAM can enable the preparation of efficient sorbent contactors in various form factors for other important chemical separations.

4.
ACS Environ Au ; 3(5): 295-307, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743951

ABSTRACT

Rising CO2 emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO2 from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents' performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO2 adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (-20 °C) under dry and humid conditions. CO2 adsorption capacities at 25 °C and 400 ppm CO2 are highest for 40 wt% TEPA-incorporated γ-Al2O3 samples (1.8 mmol CO2/g sorbent), while 40 wt % PEI-impregnated γ-Al2O3 samples exhibit moderate uptakes (0.9 mmol g-1). CO2 capacities for both PEI- and TEPA-incorporated γ-Al2O3 samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at -20 °C under dry conditions (1.6 and 1.1 mmol g-1, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g-1) across 10 cycles of adsorption-desorption (adsorption at -20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at -20 and 25 °C) improves the CO2 capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO2 uptakes at both temperatures. The results presented here indicate that γ-Al2O3 impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.

5.
J Am Chem Soc ; 145(13): 7190-7204, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36972200

ABSTRACT

A variety of amine-impregnated porous solid sorbents for direct air capture (DAC) of CO2 have been developed, yet the effect of amine-solid support interactions on the CO2 adsorption behavior is still poorly understood. When tetraethylenepentamine (TEPA) is impregnated on two different supports, commercial γ-Al2O3 and MIL-101(Cr), they show different trends in CO2 sorption when the temperature (-20 to 25 °C) and humidity (0-70% RH) of the simulated air stream are varied. In situ IR spectroscopy is used to probe the mechanism of CO2 sorption on the two supported amine materials, with weak chemisorption (formation of carbamic acid) being the dominant pathway over MIL-101(Cr)-supported TEPA and strong chemisorption (formation of carbamate) occurring over γ-Al2O3-supported TEPA. Formation of both carbamic acid and carbamate species is enhanced over the supported TEPA materials under humid conditions, with the most significant enhancement observed at -20 °C. However, while equilibrium H2O sorption is high at cold temperatures (e.g., -20 °C), the effect of humidity on a practical cyclic DAC process is expected to be minimal due to slow H2O uptake kinetics. This work suggests that the CO2 capture mechanisms of impregnated amines can be controlled by adjusting the degree of amine-solid support interaction and that H2O adsorption behavior is strongly affected by the properties of the support materials. Thus, proper selection of solid support materials for amine impregnation will be important for achieving optimized DAC performance under varied deployment conditions, such as cold (e.g., -20 °C) or ambient temperature (e.g., 25 °C) operations.

6.
JACS Au ; 3(1): 62-69, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36711098

ABSTRACT

Previous research has demonstrated that amine polymers rich in primary and secondary amines supported on mesoporous substrates are effective, selective sorbent materials for removal of CO2 from simulated flue gas and air. Common substrates used include mesoporous alumina and silica (such as SBA-15 and MCM-41). Conventional microporous materials are generally less effective, since the pores are too small to support low volatility amines. Here, we deploy our newly discovered zeolite nanotubes, a first-of-their-kind quasi-1D hierarchical zeolite, as a substrate for poly(ethylenimine) (PEI) for CO2 capture from dilute feeds. PEI is impregnated into the zeolite at specific organic loadings. Thermogravimetric analysis and porosity measurements are obtained to determine organic loading, pore filling, and surface area of the supported PEI prior to CO2 capture studies. MCM-41 with comparable pore size and surface area is also impregnated with PEI to provide a benchmark material that allows for insight into the role of the zeolite nanotube intrawall micropores on CO2 uptake rates and capacities. Over a range of PEI loadings, from 20 to 70 w/w%, the zeolite allows for increased CO2 capture capacity over the mesoporous silica by ∼25%. Additionally, uptake kinetics for nanotube-supported PEI are roughly 4 times faster than that of a comparable PEI impregnated in SBA-15. It is anticipated that this new zeolite will offer numerous opportunities for engineering additional advantaged reaction and separation processes.

7.
JACS Au ; 2(2): 380-393, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35252988

ABSTRACT

Due to the dramatically increased atmospheric CO2 concentration and consequential climate change, significant effort has been made to develop sorbents to directly capture CO2 from ambient air (direct air capture, DAC) to achieve negative CO2 emissions in the immediate future. However, most developed sorbents have been studied under a limited array of temperature (>20 °C) and humidity conditions. In particular, the dearth of experimental data on DAC at sub-ambient conditions (e.g., -30 to 20 °C) and under humid conditions will severely hinder the large-scale implementation of DAC because the world has annual average temperatures ranging from -30 to 30 °C depending on the location and essentially no place has a zero absolute humidity. To this end, we suggest that understanding CO2 adsorption from ambient air at sub-ambient temperatures, below 20 °C, is crucial because colder temperatures represent important practical operating conditions and because such temperatures may provide conditions where new sorbent materials or enhanced process performance might be achieved. Here we demonstrate that MIL-101(Cr) materials impregnated with amines (TEPA, tetraethylenepentamine, or PEI, poly(ethylenimine)) offer promising adsorption and desorption behavior under DAC conditions in both the presence and absence of humidity under a wide range of temperatures (-20 to 25 °C). Depending on the amine loading and adsorption temperature, the sorbents show different CO2 capture behavior. With 30 and 50 wt % amine loadings, the sorbents show weak and strong chemisorption-dominant CO2 capture behavior, respectively. Interestingly, at -20 °C, the CO2 adsorption capacity of 30 wt % TEPA-impregnated MIL-101(Cr) significantly increased up to 1.12 mmol/g from 0.39 mmol/g at ambient conditions (25 °C) due to the enhanced weak chemisorption. More importantly, the sorbents also show promising working capacities (0.72 mmol/g) over 15 small temperature swing cycles with an ultralow regeneration temperature (-20 °C sorption to 25 °C desorption). The sub-ambient DAC performance of the sorbents is further enhanced under humid conditions, showing promising and stable CO2 working capacities over multiple humid small temperature swing cycles. These results demonstrate that appropriately designed DAC sorbents can operate in a weak chemisorption modality at low temperatures even in the presence of humidity. Significant energy savings may be realized via the utilization of small temperature swings enabled by this weak chemisorption behavior. This work suggests that significant work on DAC materials that operate at low, sub-ambient temperatures is warranted for possible deployment in temperate and polar climates.

8.
Faraday Discuss ; 230(0): 187-212, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34042933

ABSTRACT

Carbon mineralization to solid carbonates is one of the reaction pathways that can not only utilize captured CO2 but also potentially store it in the long term. In this study, the dissolution and carbonation behaviors of alkaline solid wastes (i.e., waste concrete) was investigated. Concrete is one of the main contributors to a large carbon emission in the built environment. Thus, the upcycling of waste concrete via CO2 utilization has multifaceted environmental benefits including CO2 emission reduction, waste management and reduced mining. Unlike natural silicate minerals such as olivine and serpentine, alkaline solid wastes including waste concrete are highly reactive, and thus, their dissolution and carbonation behaviors vary significantly. Here, both conventional acid (e.g., hydrochloric acid) and less studied carbonic acid (i.e., CO2 saturated water) solvent systems were explored to extract Ca from concrete. Non-stoichiometric dissolution behaviors between Ca and Si were confirmed under far-from-equilibrium conditions (0.1 wt% slurry density), and the re-precipitation of the extracted Si was observed at near-equilibrium conditions (5 wt% slurry density), when the Ca extraction was performed at a controlled pH of 3. These experiments, with a wide range of slurry densities, provided valuable insight into Si re-precipitation phenomena and its effect on the mass transfer limitation during concrete dissolution. Next, the use of the partial pressure of CO2 for the pH swing carbon mineralization process was investigated for concrete, and the results were compared to those of Mg-bearing silicate minerals. In the PCO2 swing process, the extraction of Ca was significantly limited by the precipitation of the carbonate phase (i.e., calcite), since CO2 bubbling could not provide a low enough pH condition for concrete-water-CO2 systems. Thus, this study showed that the two-step carbon mineralization via PCO2 swing, that has been developed for Mg-bearing silicate minerals, may not be viable for highly reactive Ca-bearing silicate materials (e.g., concrete). The precipitated calcium carbonate (PCC) derived from waste concrete via a pH swing process showed very promising results with a high CO2 utilization potential as an upcycled construction material.

9.
iScience ; 24(5): 102374, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33997673

ABSTRACT

Critical minerals are essential for the ever-increasing urban and industrial activities in modern society. The shift to cost-efficient and ecofriendly urban mining can be an avenue to replace the traditional linear flow of virgin-mined materials. Electrochemical separation technologies provide a sustainable approach to metal recovery, through possible integration with renewable energy, the minimization of external chemical input, as well as reducing secondary pollution. In this review, recent advances in electrochemically mediated technologies for metal recovery are discussed, with a focus on rare earth elements and other key critical materials for the modern circular economy. Given the extreme heterogeneity of hydrometallurgically-derived media of complex feedstocks, we focus on the nature of molecular selectivity in various electrochemically assisted recovery techniques. Finally, we provide a perspective on the challenges and opportunities for process intensification in critical materials recycling, especially through combining electrochemical and hydrometallurgical separation steps.

SELECTION OF CITATIONS
SEARCH DETAIL
...