Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Ashok AGARWAL; Neel PAREKH; Manesh-Kumar PANNER-SELVAM; Ralf HENKEL; Rupin SHAH; Sheryl-T HOMA; Ranjith RAMASAMY; Edmund KO; Kelton TREMELLEN; Sandro ESTEVES; Ahmad MAJZOUB; Juan-G ALVAREZ; David-K GARDNER; Channa-N JAYASENA; Jonathan-W RAMSAY; Chak-Lam CHO; Ramadan SALEH; Denny SAKKAS; James-M HOTALING; Scott-D LUNDY; Sarah VIJ; Joel MARMAR; Jaime GOSALVEZ; Edmund SABANEGH; Hyun-Jun PARK; Armand ZINI; Parviz KAVOUSSI; Sava MICIC; Ryan SMITH; Gian-Maria BUSETTO; Mustafa-Emre BAKIRCIOĞLU; Gerhard HAIDL; Giancarlo BALERCIA; Nicolás-Garrido PUCHALT; Moncef BEN-KHALIFA; Nicholas TADROS; Jackson KIRKMAN-BROWNE; Sergey MOSKOVTSEV; Xuefeng HUANG; Edson BORGES; Daniel FRANKEN; Natan BAR-CHAMA; Yoshiharu MORIMOTO; Kazuhisa TOMITA; Vasan-Satya SRINI; Willem OMBELET; Elisabetta BALDI; Monica MURATORI; Yasushi YUMURA; Sandro LA-VIGNERA; Raghavender KOSGI; Marlon-P MARTINEZ; Donald-P EVENSON; Daniel-Suslik ZYLBERSZTEJN; Matheus ROQUE; Marcello COCUZZA; Marcelo VIEIRA; Assaf BEN-MEIR; Raoul ORVIETO; Eliahu LEVITAS; Amir WISER; Mohamed ARAFA; Vineet MALHOTRA; Sijo-Joseph PAREKATTIL; Haitham ELBARDISI; Luiz CARVALHO; Rima DADA; Christophe SIFER; Pankaj TALWAR; Ahmet GUDELOGLU; Ahmed-M-A MAHMOUD; Khaled TERRAS; Chadi YAZBECK; Bojanic NEBOJSA; Damayanthi DURAIRAJANAYAGAM; Ajina MOUNIR; Linda-G KAHN; Saradha BASKARAN; Rishma-Dhillon PAI; Donatella PAOLI; Kristian LEISEGANG; Mohamed-Reza MOEIN; Sonia MALIK; Onder YAMAN; Luna SAMANTA; Fouad BAYANE; Sunil-K JINDAL; Muammer KENDIRCI; Baris ALTAY; Dragoljub PEROVIC; Avi HARLEV.
Article in English | WPRIM (Western Pacific) | ID: wpr-761886

ABSTRACT

Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.


Subject(s)
Female , Humans , Male , Antioxidants , Classification , Clinical Protocols , Diagnosis , DNA , Embryonic Structures , Fertility , Health Expenditures , Infertility , Infertility, Male , Membranes , Ovum , Oxidants , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Reducing Agents , Reproductive Health , Semen , Spermatozoa , Subject Headings
2.
Asian Pac J Cancer Prev ; 17(9): 4517-4525, 2016 Jan 09.
Article in English | MEDLINE | ID: mdl-27880996

ABSTRACT

Background: Sperm DNA damage is underlying aetiology of poor implantation and pregnancy rates but also affects health of offspring and may also result in denovo mutations in germ line and post fertilization. This may result in complex diseases, polygenic disorders and childhood cancers. Childhood cancer like retinoblastoma (RB) is more prevalent in developing countries and the incidence of RB has increased more than three fold in India in the last decade. Recent studies have documented increased incidence of cancers in children born to fathers who consume alcohol in excess and tobacco or who were conceived by assisted conception. The aetiology of childhood cancer and increased disease burden in these children is lin ked to oxidative stress (OS) and oxidative DNA damage( ODD) in sperm of their fathers. Though several antioxidants are in use to combat oxidative stress, the effect of majority of these formulations on DNA is not known. Yoga and meditation cause significant decline in OS and ODD and aid in regulating OS levels such that reactive oxygen speues meditated signal transduction, gene expression and several other physiological functions are not disrupted. Thus, this study aimed to analyze sperm ODD as a possible etiological factor in childhood cancer and role of simple life style interventions like yoga and meditation in significantly decreasing seminal oxidative stress and oxidative DNA damage and thereby decreasing incidence of childhood cancers. Materials and Methods: A total of 131 fathers of children with RB (non-familial sporadic heritable) and 50 controls (fathers of healthy children) were recruited at a tertiary center in India. Sperm parameters as per WHO 2010 guidelines and reactive oxygen species (ROS), DNA fragmentation index (DFI), 8-hydroxy-2'-deoxy guanosine (8-OHdG) and telomere length were estimated at day 0, and after 3 and 6 months of intervention. We also examined the compliance with yoga and meditation practice and smoking status at each follow-up. Results: The seminal mean ROS levels (p<0.05), sperm DFI (p<0.001), 8-OHdG (p<0.01) levels were significantly higher in fathers of children with RB, as compared to controls and the relative mean telomere length in the sperm was shorter. Levels of ROS were significantly reduced in tobacco users (p<0.05) as well as in alcoholics (p<0.05) after intervention. DFI reduced significantly (p<0.05) after 6 months of yoga and meditation practice in all groups. The levels of oxidative DNA damage marker 8-OHdG were reduced significantly after 3 months (p<0.05) and 6 months (p<0.05) of practice. Conclusions: Our results suggest that OS and ODD DNA may contribute to the development of childhood cancer. This may be due to accumulation of oxidized mutagenic base 8OHdG , and elevated MDA levels which results in MDA dimers which are also mutagenic, aberrant methylation pattern, altered gene expression which affect cell proliferation and survival through activation of transcription factors. Increased mt DNA mutations and aberrant repair of mt and nuclear DNA due to highly truncatred DNA repair mechanisms all contribute to sperm genome hypermutability and persistant oxidative DNA damage. Oxidative stress is also associated with genome wide hypomethylation, telomere shortening and mitochondrial dysfunction leading to genome hypermutability and instability. To the best of our knowledge, this is the first study to report decline in OS and ODD and improvement in sperm DNA integrity following adoption of meditation and yoga based life style modification.This may reduce disease burden in next generation and reduce incidence of childhood cancers.

3.
Asian Journal of Andrology ; (6): 720-722, 2007.
Article in English | WPRIM (Western Pacific) | ID: wpr-310459

ABSTRACT

<p><b>AIM</b>To determine if Yq microdeletion frequency and loci of deletion are similar in two tissues (blood and sperm) of different embryological origin.</p><p><b>METHODS</b>The present study included 52 infertile oligozoospermic cases. In each case, DNA was isolated from blood and sperms and polymerase chain reaction (PCR) microdeletion analysis was done from genomic DNA isolated from both the tissues. The PCR products were analyzed on a 1.8% agarose gel. PCR amplifications found to be negative were repeated at least three times to confirm the deletion of a given marker.</p><p><b>RESULTS</b>Only 1 case harbored microdeletion in blood DNA, whereas 4 cases harbored microdeletion in sperm DNA.</p><p><b>CONCLUSION</b>The frequency of Yq microdeletions is higher in germ cells as compared to blood. As the majority of infertile couples opt for assisted reproduction procreation techniques (ART), Yq microdeletion screening from germ cells is important to understand the genetic basis of infertility, to provide comprehensive counseling and most adapted therapeutics to the infertile couple.</p>


Subject(s)
Humans , Male , Chromosomes, Human, Y , Genetics , DNA , Blood , Genetics , Repetitive Sequences, Nucleic Acid , Sequence Deletion , Spermatozoa , Physiology
4.
Asian Journal of Andrology ; (6): 81-88, 2006.
Article in English | WPRIM (Western Pacific) | ID: wpr-270821

ABSTRACT

<p><b>AIM</b>To study the occurrence of Y chromosome microdeletions in azoospermic patients with Klinefelter's syndrome (KFS).</p><p><b>METHODS</b>Blood and semen samples were collected from azoospermic patients with KFS (n = 14) and a control group of men of proven fertility (n = 13). Semen analysis was done according to World Health Organization (WHO) guidelines. Blood samples were processed for karyotyping, fluorescent in situ hybridization (FISH) and measurement of plasma follicle stimulating hormone (FSH) by radioimmunoassay. To determine Y chromosome microdeletions, polymerase chain reaction (PCR) of 16 sequence tagged sites (STS) and three genes (DFFRY, XKRY and RBM1Y) was performed on isolated genomic DNA. Testicular fine needle aspiration cytology (FNAC) was done in selected cases.</p><p><b>RESULTS</b>Y chromosome microdeletions spanning the azoospermia factor (AZF)a and AZFb loci were found in four of the 14 azoospermic patients with KFS. Karyotype and FISH analysis revealed that, of the four cases showing Y chromosome microdeletion, three cases had a 47,XXY/46,XY chromosomal pattern and one case had a 46,XY/47,XXY/48,XXXY/48,XXYY chromosomal pattern. The testicular FNAC of one sample with Y chromosome microdeletion revealed Sertoli cell-only type of morphology. However, no Y chromosome microdeletions were observed in any of the 13 fertile men. All patients with KFS had elevated plasma FSH levels.</p><p><b>CONCLUSION</b>Patients with KFS may harbor Y chromosome microdeletions and screening for these should be a part of their diagnostic work-up, particularly in those considering assisted reproductive techniques.</p>


Subject(s)
Adolescent , Adult , Humans , Male , Chromosome Deletion , Chromosomes, Human, Y , Electrophoresis, Gel, Two-Dimensional , Genetic Loci , In Situ Hybridization, Fluorescence , Karyotyping , Klinefelter Syndrome , Genetics , Mosaicism , Oligospermia , Genetics , Seminal Plasma Proteins , Genetics , Sequence Tagged Sites
5.
Asian Journal of Andrology ; (6): 259-263, 2002.
Article in English | WPRIM (Western Pacific) | ID: wpr-284040

ABSTRACT

<p><b>AIM</b>To identify submicroscopic interstitial deletions in azoospermia factor (AZF) loci in idiopathic and non-idiopathic cases of male infertility in Indians.</p><p><b>METHODS</b>One hundred and twenty two infertile males with oligozoospermia or azoospermia were included in this study. Semen analysis was done to determine the sperm density, i.e., normospermia (>20 million/mL), oligozoospermia (<20 million/mL) or azoospermia. They were subjected to detailed clinical examination and endocrinological and cytogenetic study. Thirty G-banded metaphases were analyzed in the 122 cases and polymerase chain reaction (PCR) microdeletion analysis was done in 70 cytogenetically normal subjects. For this genomic DNA was extracted using peripheral blood. The STS primers tested in each case were sY84, sY86 (AZFa); sY127, sY134 (AZFb); sY254, sY255 (AZFc). PCR amplifications found to be negative were repeated at least 3 times to confirm the deletion of a given marker. The PCR products were analyzed on a 1.8 % agarose gel.</p><p><b>RESULTS</b>Eight of the 70 cases (11.4 %) showed deletion of at least one of the STS markers. Deletions were detected in cases with known and unknown aetiology with bilateral severe testiculopathy and also in cryptorchid and varicocele subjects.</p><p><b>CONCLUSION</b>AZF microdeletions were seen in both idiopathic and non-idiopathic cases with cryptorchidism and varicocele. The finding of a genetic aetiology in infertile men with varicocele and cryptorchidism suggests the need for molecular screening in non-idiopathic cases.</p>


Subject(s)
Adult , Humans , Male , Biopsy, Needle , Chromosome Banding , Chromosomes, Human, Y , Cryptorchidism , Genetics , Follicle Stimulating Hormone , Blood , Gene Deletion , Genetic Loci , Metaphase , Oligospermia , Genetics , Polymerase Chain Reaction , Reference Values , Semen , Chemistry , Seminal Plasma Proteins , Genetics , Sperm Count , Testis , Pathology , Varicocele , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...