Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 13(9): e2303351, 2024 04.
Article in English | MEDLINE | ID: mdl-38277705

ABSTRACT

In vitro engineered skin models are emerging as an alternative platform to reduce and replace animal testing in dermatological research. Despite the progress made in recent years, considerable challenges still exist for the inclusion of diverse cell types within skin models. Blood vessels, in particular, are essential in maintaining tissue homeostasis and are one of many primary contributors to skin disease inception and progression. Substantial efforts in the past have allowed the successful fabrication of vascularized skin models that are currently utilized for disease modeling and drugs/cosmetics testing. This review first discusses the need for vascularization within tissue-engineered skin models, highlighting their role in skin grafting and disease pathophysiology. Second, the review spotlights the milestones and recent progress in the fabrication and utilization of vascularized skin models. Additionally, advances including the use of bioreactors, organ-on-a-chip devices, and organoid systems are briefly explored. Finally, the challenges and future outlook for vascularized skin models are addressed.


Subject(s)
Skin Diseases , Tissue Engineering , Animals , Humans , Skin , Neovascularization, Pathologic , Organoids
2.
Sci Rep ; 13(1): 8382, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225757

ABSTRACT

Functional unit of many organs like lung, kidney, intestine, and eye have their endothelial and epithelial monolayers physically separated by a specialized extracellular matrix called the basement membrane. The intricate and complex topography of this matrix influences cell function, behavior and overall homeostasis. In vitro barrier function replication of such organs requires mimicking of these native features on an artificial scaffold system. Apart from chemical and mechanical features, the choice of nano-scale topography of the artificial scaffold is integral, however its influence on monolayer barrier formation is unclear. Though studies have reported improved single cell adhesion and proliferation in presence of pores or pitted topology, corresponding influence on confluent monolayer formation is not well reported. In this work, basement membrane mimic with secondary topographical cues is developed and its influence on single cells and their monolayers is investigated. We show that single cells cultured on fibers with secondary cues form stronger focal adhesions and undergo increased proliferation. Counterintuitively, absence of secondary cues promoted stronger cell-cell interaction in endothelial monolayers and promoted formation of integral tight barriers in alveolar epithelial monolayers. Overall, this work highlights the importance of choice of scaffold topology to develop basement barrier function in in vitro models.


Subject(s)
Cell Communication , Focal Adhesions , Cell Adhesion , Homeostasis , Basement Membrane
3.
Adv Drug Deliv Rev ; 189: 114504, 2022 10.
Article in English | MEDLINE | ID: mdl-35998825

ABSTRACT

The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Cancer-Associated Fibroblasts/metabolism , Fibroblasts , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/metabolism , Neovascularization, Pathologic/pathology , Tumor Microenvironment
4.
Small ; 18(25): e2200673, 2022 06.
Article in English | MEDLINE | ID: mdl-35527333

ABSTRACT

Endogenous targeted radiotherapy is emerging as an integral modality to treat a variety of cancer entities. Nevertheless, despite the positive clinical outcome of the treatment using radiolabeled peptides, small molecules, antibodies, and nanobodies, a high degree of hepatotoxicity and nephrotoxicity still persist. This limits the amount of dose that can be injected. In an attempt to mitigate these side effects, the use of nanocarriers such as nanoparticles (NPs), dendrimers, micelles, liposomes, and nanogels (NGs) is currently being explored. Nanocarriers can prolong circulation time and tumor retention, maximize radiation dosage, and offer multifunctionality for different targeting strategies. In this review, the authors first provide a summary of radiation therapy and imaging and discuss the new radiotracers that are used preclinically and clinically. They then highlight and identify the advantages of radio-nanomedicine and its potential in overcoming the limitations of endogenous radiotherapy. Finally, the review points to the ongoing efforts to maximize the use of radio-nanomedicine for efficient clinical translation.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Antineoplastic Agents/therapeutic use , Drug Carriers , Humans , Micelles , Nanomedicine/methods , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/radiotherapy , Peptides/therapeutic use , Precision Medicine
5.
Angew Chem Int Ed Engl ; 61(20): e202116653, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35274425

ABSTRACT

Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro- and hepato-toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half-life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano- or microgels.


Subject(s)
Microgels , Positron Emission Tomography Computed Tomography , Blood Circulation Time , Elasticity , Nanogels
6.
Sci Rep ; 11(1): 21966, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34754042

ABSTRACT

Breast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.


Subject(s)
Neoplasm Metastasis , Neovascularization, Pathologic , Osteoblasts/pathology , Triple Negative Breast Neoplasms/blood supply , Cell Line, Tumor , Coculture Techniques , Female , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
7.
Biomater Sci ; 10(1): 85-99, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34812809

ABSTRACT

Neutrophil extracellular traps (NETs) are web-like chromatin structures produced and liberated by neutrophils under inflammatory conditions which also promote the activation of the coagulation cascade and thrombus formation. The formation of NETs is quite prominent when blood comes in contact with artificial surfaces like extracorporeal circuits, oxygenator membranes, or intravascular grafts. DNase I as a factor of the host defense system, digests the DNA backbone of NETs, which points out its treatment potential for NET-mediated thrombosis. However, the low serum stability of DNase I restricts its clinical/therapeutic applications. To improve the bioavailability of the enzyme, DNase I was conjugated to the microgels (DNase I MG) synthesized from highly hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and zwitterionic carboxybetaine methacrylamide (CBMAA). The enzyme was successfully conjugated to the microgels without any alternation to its secondary structure. The Km value representing the enzymatic activity of the conjugated DNase I was calculated to be 0.063 µM demonstrating a high enzyme-substrate affinity. The DNase I MGs were protein repellant and were able to digest NETs more efficiently compared to free DNase in a biological media, remarkably even after long-term exposure to the stimulated neutrophils continuously releasing NETs. Overall, the conjugation of DNase I to a non-fouling microgel provides a novel biohybrid platform that can be exploited as non-thrombogenic active microgel-based coatings for blood-contacting surfaces to reduce the NET-mediated inflammation and microthrombi formation.


Subject(s)
Extracellular Traps , Microgels , Thrombosis , Deoxyribonuclease I , Humans , Neutrophils
8.
Sci Adv ; 7(36): eabg6666, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34516902

ABSTRACT

Extracellular vesicles (EVs) are fundamental for intercellular communication and influence nearly every process in cell physiology. However, because of their intricate molecular complexity, quantitative knowledge on their signaling mechanisms is missing, particularly impeding their therapeutic application. We used a complementary and quantitative engineering approach based on sequential synthetic bottom-up assembly of fully functional EVs with precisely controlled lipid, protein, and RNA composition. We show that the functionalities of synthetic EVs are analogous to natural EVs and demonstrate their programmable therapeutic administration for wound healing and neovascularization therapy. We apply transcriptome profiling to systematically decode synergistic effects between individual EV constituents, enabling analytical dissection and a fundamental understanding of EV signaling.

9.
Acta Biomater ; 113: 350-359, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32663661

ABSTRACT

Surface topographies at micro- and nanoscales can influence different cellular behavior, such as their growth rate and directionality. While different techniques have been established to fabricate 2-dimensional flat substrates with nano- and microscale topographies, most of them are prone to high costs and long preparation times. The 2.5-dimensional fiber platform presented here provides knowledge on the effect of the combination of fiber alignment, inter-fiber distance (IFD), and fiber surface topography on contact guidance to direct neurite behavior from dorsal root ganglia (DRGs) or dissociated primary neurons. For the first time, the interplay of the micro-/nanoscale topography and IFD is studied to induce linear nerve growth, while controlling branching. The results demonstrate that grooved fibers promote a higher percentage of aligned neurite extension, compensating the adverse effect of increased IFD. Accordingly, maximum neurite extension from primary neurons is achieved on grooved fibers separated by an IFD of 30 µm, with a higher percentage of aligned neurons on grooved fibers at a large IFD compared to porous fibers with the smallest IFD of 10 µm. We further demonstrate that the neurite "decision-making" behavior on whether to cross a fiber or grow along it is not only dependent on the IFD but also on the fiber surface topography. In addition, axons growing in between the fibers seem to have a memory after leaving grooved fibers, resulting in higher linear growth and higher IFDs lead to more branching. Such information is of great importance for new material development for several tissue engineering applications. STATEMENT OF SIGNIFICANCE: One of the key aspects of tissue engineering is controlling cell behavior using hierarchical structures. Compared to 2D surfaces, fibers are an important class of materials, which can emulate the native ECM architecture of tissues. Despite the importance of both fiber surface topography and alignment to direct growing neurons, the current state of the art did not yet study the synergy between both scales of guidance. To achieve this, we established a solvent assisted spinning process to combine these two crucial features and control neuron growth, alignment, and branching. Rational design of new platforms for various tissue engineering and drug discovery applications can benefit from such information as it allows for fabrication of functional materials, which selectively influence neurite behavior.


Subject(s)
Neurites , Polyesters , Cues , Ganglia, Spinal , Tissue Engineering
10.
ACS Appl Bio Mater ; 3(10): 6639-6647, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-35019390

ABSTRACT

Psoriasis is an incurable, immune-mediated inflammatory disease characterized by the hyperproliferation and abnormal differentiation of keratinocytes. To study in depth the pathogenesis of this disease and possible therapy options suitable, pre-clinical models are required. Three-dimensional skin equivalents are a potential alternative to simplistic monolayer cultures and immunologically different animal models. However, current skin equivalents lack long-term stability, which jeopardizes the possibility to simulate the complex disease-specific phenotype followed by long-term therapeutic treatment. To overcome this limitation, the cell coating technique was used to fabricate full-thickness human skin equivalents (HSEs). This rapid and scaffold-free fabrication method relies on coating cell membranes with nanofilms using layer-by-layer assembly, thereby allowing extended cultivation of HSEs up to 49 days. The advantage in time is exploited to develop a model that not only forms a disease phenotype but can also be used to monitor the effects of topical or systemic treatment. To generate a psoriatic phenotype, the HSEs were stimulated with recombinant human interleukin 17A (rhIL-17A). This was followed by systemic treatment of the HSEs with the anti-IL-17A antibody secukinumab in the presence of rhIL-17A. Microarray and RT-PCR analysis demonstrated that HSEs treated with rhIL-17A showed downregulation of differentiation markers and upregulation of chemokines and cytokines, while treatment with anti-IL-17A antibody reverted these gene regulations. Gene ontology analysis revealed the proinflammatory and chemotactic effects of rhIL-17A on the established HSEs. These data demonstrated, at the molecular level, the effects of anti-IL-17A antibody on rhIL-17A-induced gene regulations. This shows the physiological relevance of the developed HSE and opens venues for its use as an alternative to ex vivo skin explants and animal testing.

11.
ACS Appl Mater Interfaces ; 11(8): 7671-7685, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30694648

ABSTRACT

The extracellular matrix (ECM) is a dynamic three-dimensional (3D) fibrous network, surrounding all cells in vivo. Fiber manufacturing techniques are employed to mimic the ECM but still lack the knowledge and methodology to produce single fibers approximating cell size with different surface topographies to study cell-material interactions. Using solvent-assisted spinning (SAS), the potential to continuously produce single microscale fibers with unlimited length, precise diameter, and specific surface topographies was demonstrated. By applying solvents with different solubilities and volatilities, fibers with smooth, grooved, and porous surface morphologies are produced. Due to their hierarchical structures, the porous fibers are the most hydrophobic, followed by the grooved and the smooth fibers. The fiber diameter is increased by increasing the polymer concentration or decreasing the collector rotational speed. Moreover, SAS offers the advantage to control the interfiber distance and angle to fabricate multilayered 3D constructs. This report shows for the first time that the micro- and nanoscale topographies of single fibers mechanically regulate cell behavior. Fibroblasts, grown on fibers with grooved topographical features, stretch and elongate more compared to smooth and porous fibers, whereas both porous and grooved fibers induce nuclear translocation of yes-associated protein. The presented technique, therefore, provides a unique platform to study the interaction between cells and single ECM-like fibers in a precise and reproducible manner, which is of great importance for new material developments in the field of tissue engineering.

12.
Biophys J ; 114(6): 1321-1335, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590590

ABSTRACT

The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and ß-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.


Subject(s)
Cell Membrane/drug effects , Cell Membrane/metabolism , Degenerin Sodium Channels/metabolism , Epithelial Sodium Channels/metabolism , Hydrophobic and Hydrophilic Interactions , Animals , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...