Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166642, 2023 04.
Article in English | MEDLINE | ID: mdl-36669578

ABSTRACT

Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals. Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.


Subject(s)
Cellular Senescence , Heart , Animals , Cellular Senescence/physiology , Aging/pathology , Fibrosis , Fibroblasts/metabolism
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166525, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35987478

ABSTRACT

Cardiac fibroblasts (CFs) undergo senescence in reaction to different stressors, leading to a poor prognosis of cardiac disease. Doxorubicin (Doxo) is an antineoplastic drug with strong cardiotoxic effects, which induces IL-1ß secretion and thus, triggers a potent pro-inflammatory response. Doxo induces CFs senescence; however, the mechanisms are not fully understood. Different pharmacological strategies have been used to eliminate senescent cells by inducing their apoptosis or modifying their secretome. However, Resolvin E1 (RvE1), a lipid derivative resolutive mediator with potent anti-inflammatory effects has not been used before to prevent CFs senescence. CFs were isolated from adult male C57BL/6J mice and subsequently stimulated with Doxo, in the presence or absence of RvE1. Senescence-associated ß-galactosidase activity (SA-ß-gal), γ-H2A.X, p53, p21, and senescence-associated secretory phenotype (SASP) were evaluated. The involvement of the NLRP3 inflammasome/interleukin-1 receptor (IL-1R) signaling pathway on CFs senescence was studied using an NLRP3 inhibitor (MCC950) and an endogenous IL-1R antagonist (IR1A). Doxo is able to trigger CFs senescence, as evidenced by an increase of γ-H2A.X, p53, p21, and SA-ß-gal, and changes in the SASP profile. These Doxo effects were prevented by RvE1. Doxo triggers IL-1ß secretion, which was dependent on NLRP3 activation. Doxo-induced CFs senescence was partially blocked by MCC950 and IR1A. In addition, IL-1ß also triggered CFs senescence, as evidenced by the increase of γ-H2A.X, p53, p21, SA-ß-gal activity, and SASP. All these effects were also prevented by RvE1 treatment. CONCLUSION: These data show the anti-senescent role of RvE1 in Doxo-induced CFs senescence, which could be mediated by reducing IL-1ß secretion.


Subject(s)
Inflammasomes , Interleukin-1beta/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cellular Senescence , Doxorubicin/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Fibroblasts/metabolism , Furans , Indenes , Inflammasomes/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Interleukin-1/metabolism , Sulfonamides , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/pharmacology
3.
Inflammation ; 45(6): 2498-2512, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35867264

ABSTRACT

Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation. However, in CF the mechanism by which Ang-II assembles and activates the NLRP3 inflammasome remains not fully known. To elucidate this important point, we stimulated TLR4 receptors in CF and evaluated the signaling pathways by which Ang-II triggers the assembly and activity. In cultured rat CF, pro-IL-1ß levels, NLRP3, ASC, and caspase-1 expression levels were determined by Western blot. NLRP3 inflammasome complex assembly was analyzed by immunocytochemistry, whereas by ELISA, we analyzed NLRP3 inflammasome activity and [Formula: see text] release. In CF, Ang-II triggered NLRP3 inflammasome assembly and caspase-1 activity; and in LPS-pretreated CF, Ang-II also triggered [Formula: see text] secretion. These effects were blocked by losartan (AT1R antagonist), U73221 (PLC inhibitor), 2-APB (IP3R antagonist), and BAPTA-AM (Ca2+ chelator) indicating that the AT1R/PLC/IP3R/Ca2+ pathway is involved. Finally, bafilomycin A1 prevented Ang-II-induced [Formula: see text] secretion, indicating that a non-classical protein secretion mechanism is involved. These findings suggest that in CF, Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome assembly and activation leading to [Formula: see text] secretion through a non-conventional protein secretion mechanism.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Rats , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Angiotensin II/pharmacology , Toll-Like Receptor 4 , Interleukin-1beta/metabolism , Caspase 1/metabolism , Fibroblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...