Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 264: 107188, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37130498

ABSTRACT

As a part of the overall safety assessment for a geological disposal of radioactive waste, models for different ecosystems are used to evaluate doses to humans and biota from possible radionuclide discharges to the biosphere. In previous safety assessments, transport modelling of radionuclides in running waters such as streams has been much simplified to the extent that only dilution of the inflow of radionuclides has been considered with no regard of any other interactions. Hyporheic exchange flow (HEF) is the flow of surface water in streams that enters the subsurface zone and, after some time, returns to the surface. HEF has been studied for decades. Hyporheic exchange and the residence time in the hyporheic zone are key parameters controlling the transport of radionuclides in a stream. Furthermore, recent studies have shown that HEF can reduce the groundwater upwelling area and increase the upwelling velocity in areas closest to the streambed water interface. In this paper, the development of an assessment model describing radionuclide transport with consideration of HEF and deep groundwater upwelling along streams is presented. An approach to parameterising the hyporheic exchange processes into an assessment model is based on a comprehensive study that has been performed in five different Swedish catchments. Sensitivity analyses are performed to explore the effect with consideration of the inflow of radionuclides with regard to HEF and deep groundwater upwelling in a safety assessment perspective. Finally, we include some suggestions for the application of the assessment model to long-term radiological safety assessments.


Subject(s)
Groundwater , Radiation Monitoring , Humans , Rivers , Ecosystem , Radioisotopes , Water
2.
Ground Water ; 61(1): 66-85, 2023 01.
Article in English | MEDLINE | ID: mdl-35984214

ABSTRACT

Significant attention has been given to hyporheic water fluxes induced by hydromorphologic processes in streambeds and the effects they have on stream ecology. However, the impact of hyporheic fluxes on regional groundwater flow discharge zones as well as the interaction of these flows are much less investigated. The groundwater-hyporheic interactive flow not only governs solute mass and heat transport in streams but also controls the retention of solute and contamination following the discharge of deep groundwater, such as naturally occurring solutes and leakage from geological waste disposal facilities. Here, we applied a physically based modeling approach combined with extensive hydrologic, geologic and geographical data to investigate the effect of hyporheic flow on groundwater discharge in the Krycklan catchment, located in a boreal landscape in Sweden. Regional groundwater modeling was conducted using COMSOL Multiphysics by considering geologic heterogeneity and infiltration constraint of the groundwater circulation intensity. Moreover, the hyporheic flow was analyzed using an exact spectral solution accounting for the fluctuating streambed topography and superimposed with the regional groundwater flow. By comparing the discharge flow fields with and without consideration of hyporheic flows, we found that the divergence of the discharge was substantially enhanced and the distribution of the travel times of groundwater was significantly shifted toward shorter times due to the presence of hyporheic flow. Particularly important is that the groundwater flow paths contract near the streambed interface due to the hyporheic flow, which leads to a phenomenon that we name "fragmentation" of coherent areas of groundwater upwelling in pinhole-shaped stream tubes.


Subject(s)
Groundwater , Rivers , Water Movements , Hydrology , Water
3.
Sci Rep ; 8(1): 17232, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30467316

ABSTRACT

Quantifying short-term changes in river flow is important in understanding the environmental impacts of hydropower generation. Energy markets can change rapidly and energy demand fluctuates at sub-daily scales, which may cause corresponding changes in regulated river flow (hydropeaking). Due to increasing use of renewable energy, in future hydropower will play a greater role as a load balancing power source. This may increase current hydropeaking levels in Nordic river systems, creating challenges in maintaining a healthy ecological status. This study examined driving forces for hydropeaking in Nordic rivers using extensive datasets from 150 sites with hourly time step river discharge data. It also investigated the influence of increased wind power production on hydropeaking. The data revealed that hydropeaking is at high levels in the Nordic rivers and have seen an increase over the last decade and especially over the past few years. These results indicate that increased building for renewable energy may increase hydropeaking in Nordic rivers.

4.
Sci Total Environ ; 458-460: 344-54, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23669580

ABSTRACT

Quantitative information regarding the capacity of rivers to self-purify pharmaceutical residues is limited. To bridge this knowledge gap, we present a methodology for quantifying the governing processes affecting the fate of pharmaceuticals in streaming waters and, especially, to evaluate their relative significance for tracer observations. A tracer test in Säva Brook, Sweden was evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream, which are presumably important for the retention and attenuation of pharmaceuticals. To assess the key processes affecting the environmental fate of the compounds, we linked the uncertainty estimates of the reaction rate coefficients to the relative influence of transformation and sorption that occurred in different stream environments. The hydrological and biogeochemical contributions to the fate of the pharmaceuticals were decoupled, and the results indicate a moderate hydrological retention in the hyporheic zone as well as in the densely vegetated parts of the stream. Biogeochemical reactions in these transient storage zones further affected the fate of the pharmaceuticals, and we found that sorption was the key process for bezafibrate, metoprolol, and naproxen, while primary transformation was the most important process for clofibric acid and ibuprofen. Conversely, diclofenac was not affected by sorption or transformation.


Subject(s)
Models, Theoretical , Pharmaceutical Preparations/analysis , Rivers/chemistry , Water Movements , Water Pollutants, Chemical/analysis , Adsorption , Bezafibrate , Chromatography, High Pressure Liquid , Clofibric Acid , Ibuprofen , Metoprolol , Naproxen , Sensitivity and Specificity , Sweden , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...