Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
PLoS Genet ; 16(12): e1009201, 2020 12.
Article in English | MEDLINE | ID: mdl-33383577

ABSTRACT

Conjunctival melanoma (CJM) is a rare but potentially lethal and highly-recurrent cancer of the eye. Similar to cutaneous melanoma (CM), it originates from melanocytes. Unlike CM, however, CJM is relatively poorly characterized from a genomic point of view. To fill this knowledge gap and gain insight into the genomic nature of CJM, we performed whole-exome (WES) or whole-genome sequencing (WGS) of tumor-normal tissue pairs in 14 affected individuals, as well as RNA sequencing in a subset of 11 tumor tissues. Our results show that, similarly to CM, CJM is also characterized by a very high mutation load, composed of approximately 500 somatic mutations in exonic regions. This, as well as the presence of a UV light-induced mutational signature, are clear signs of the role of sunlight in CJM tumorigenesis. In addition, the genomic classification of CM proposed by TCGA seems to be well-applicable to CJM, with the presence of four typical subclasses defined on the basis of the most frequently mutated genes: BRAF, NF1, RAS, and triple wild-type. In line with these results, transcriptomic analyses revealed similarities with CM as well, namely the presence of a transcriptomic subtype enriched for immune genes and a subtype enriched for genes associated with keratins and epithelial functions. Finally, in seven tumors we detected somatic mutations in ACSS3, a possible new candidate oncogene. Transfected conjunctival melanoma cells overexpressing mutant ACSS3 showed higher proliferative activity, supporting the direct involvement of this gene in the tumorigenesis of CJM. Altogether, our results provide the first unbiased and complete genomic and transcriptomic classification of CJM.


Subject(s)
Conjunctival Neoplasms/genetics , DNA Copy Number Variations , Melanoma/genetics , Mutation , Transcriptome , Cell Line, Tumor , Conjunctival Neoplasms/metabolism , Female , Humans , Male , Melanoma/metabolism , Middle Aged , Neurofibromin 1/genetics , Proto-Oncogene Proteins B-raf/genetics , ras Proteins/genetics
2.
Invest Ophthalmol Vis Sci ; 60(7): 2764-2772, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31247083

ABSTRACT

Purpose: To analyze the activity of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinases/mechanistic target of rapamycin (PI3K/mTOR) pathways in benign and malignant conjunctival melanocytic proliferations and explore whether specific inhibitors can suppress growth of conjunctival melanoma (CJM) cells. Methods: The presence of a BRAF V600E mutation and activation of ERK, MEK, S6, and AKT were assessed with immunohistochemistry in 35 conjunctival nevi and 31 melanomas. Three CJM cell lines were used: CRMM1, carrying the BRAF V600E mutation; CRMM2, harboring the NRAS Q61L mutation; and T1527A, with a BRAF G466E mutation. WST-1 assays were performed with a BRAF inhibitor (vemurafenib), two MEK inhibitors (trametinib, selumetinib), a PI3K inhibitor (pictilisib), and a dual PI3K/mTOR inhibitor (dactolisib). The phosphorylation of ERK, MEK, and S6 were tested with western blots and apoptosis with cleaved caspase-3 immunostaining. Results: A BRAF V600E mutation was detected in 42.6% of nevi and in 35.5% of CJM. MEK and ERK activation were higher in CJM, occurring in 62.9% and 45.7% of the nevi and 90.3% and 96.8% of the CJM, respectively. There was also a significant increase in S6 activation in CJM (90.3%) compared with the nevi (20%). CRMM1 was sensitive to trametinib and the PI3K inhibitors but only marginally to vemurafenib. CRMM2 was moderately sensitive to pictilisib, whereas T1527A was resistant to all drugs tested. Conclusions: The MAPK pathway activity in CJM is increased, not only as a consequence of the BRAF V600E mutation. Targeted therapy may be useful for patients with CJM, especially those with activating BRAF mutations, whereas NRAS-mutated melanomas are relatively resistant.


Subject(s)
Antineoplastic Agents/therapeutic use , Conjunctival Neoplasms/drug therapy , Melanoma/drug therapy , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Molecular Targeted Therapy , Phosphatidylinositol 3-Kinases/drug effects , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Benzimidazoles/therapeutic use , Blotting, Western , Conjunctival Neoplasms/enzymology , Conjunctival Neoplasms/pathology , Female , Fluorescent Antibody Technique, Indirect , Humans , Imidazoles/therapeutic use , Indazoles/therapeutic use , Male , Melanoma/enzymology , Melanoma/pathology , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Quinolines/therapeutic use , Sulfonamides/therapeutic use , Tumor Cells, Cultured
3.
J Invest Dermatol ; 137(12): 2578-2587, 2017 12.
Article in English | MEDLINE | ID: mdl-28844941

ABSTRACT

The secreted growth factor Activin-A of the transforming growth factor ß family and its receptors can promote or inhibit several cancer hallmarks including tumor cell proliferation and differentiation, vascularization, lymphangiogenesis and inflammation. However, a role in immune evasion and its relationship with tumor-induced muscle wasting and tumor vascularization, and the relative contributions of autocrine versus paracrine Activin signaling remain to be evaluated. To address this, we compared the effects of truncated soluble Activin receptor IIB as a ligand trap, or constitutively active mutant type IB receptor versus secreted Activin-A or the related ligand Nodal in mouse and human melanoma cell lines and tumor grafts. We found that although cell-autonomous receptor activation arrested tumor cell proliferation, Activin-A secretion stimulated melanoma cell dedifferentiation and tumor vascularization by functional blood vessels, and it increased primary and metastatic tumor burden and muscle wasting. Importantly, in mice with impaired adaptive immunity, the tumor-promoting effect of Activin-A was lost despite sustained vascularization and cachexia, suggesting that Activin-A promotes melanoma progression by inhibiting antitumor immunity. Paracrine Activin-A signaling emerges as a potential target for personalized therapies, both to reduce cachexia and to enhance the efficacy of immunotherapies.


Subject(s)
Activins/metabolism , Immune Evasion , Melanoma/metabolism , Skin Neoplasms/metabolism , Animals , Cachexia , Cell Cycle , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Immune System , Ki-67 Antigen/metabolism , Melanoma/pathology , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Nude , Neovascularization, Pathologic , Phenotype , Signal Transduction , Skin Neoplasms/pathology , Tumor Microenvironment
4.
Cancer Res ; 77(7): 1623-1636, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28104684

ABSTRACT

Although mutations drive cancer, it is less clear to what extent genetic defects control immune mechanisms and confer resistance to T-cell-based immunotherapy. Here, we studied the reactions of malignant and benign melanocyte lines to cytotoxic CD8+ T cells (CTL) using flow cytometry and gene expression analyses. We found rapid and broad upregulation of immune-regulatory genes, essentially triggered by CTL-derived IFNγ and augmented by TNFα. These reactions were predominantly homogenous, independent of oncogenic driver mutations, and similar in benign and malignant cells. The reactions exhibited both pro- and antitumorigenic potential and primarily corresponded to mechanisms that were conserved, rather than acquired, by mutations. Similar results were obtained from direct ex vivo analysis of the tumor microenvironment. Thus, immune regulation in the tumor landscape may often be driven by conserved mechanisms, which may explain why T-cell-based immunotherapy can provide durable benefits with relatively infrequent escape. Cancer Res; 77(7); 1623-36. ©2017 AACR.


Subject(s)
Melanoma/immunology , T-Lymphocytes, Cytotoxic/immunology , Cell Line, Tumor , GTP Phosphohydrolases/genetics , Genetic Heterogeneity , Humans , Immunotherapy , Interferon-gamma/pharmacology , Lymphocyte Activation , Melanoma/therapy , Membrane Proteins/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Tumor Escape , Tumor Microenvironment , Tumor Necrosis Factor-alpha/pharmacology
5.
Am J Hum Genet ; 99(5): 1190-1198, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27745836

ABSTRACT

Uveal melanoma (UM) is a rare intraocular tumor that, similar to cutaneous melanoma, originates from melanocytes. To gain insights into its genetics, we performed whole-genome sequencing at very deep coverage of tumor-control pairs in 33 samples (24 primary and 9 metastases). Genome-wide, the number of coding mutations was rather low (only 17 variants per tumor on average; range 7-28), thus radically different from cutaneous melanoma, where hundreds of exonic DNA insults are usually detected. Furthermore, no UV light-induced mutational signature was identified. Recurrent coding mutations were found in the known UM drivers GNAQ, GNA11, BAP1, EIF1AX, and SF3B1. Other genes, i.e., TP53BP1, CSMD1, TTC28, DLK2, and KTN1, were also found to harbor somatic mutations in more than one individual, possibly indicating a previously undescribed association with UM pathogenesis. De novo assembly of unmatched reads from non-coding DNA revealed peculiar copy-number variations defining specific UM subtypes, which in turn could be associated with metastatic transformation. Mutational-driven comparison with other tumor types showed that UM is very similar to pediatric tumors, characterized by very few somatic insults and, possibly, important epigenetic changes. Through the analysis of whole-genome sequencing data, our findings shed new light on the molecular genetics of uveal melanoma, delineating it as an atypical tumor of the adult for which somatic events other than mutations in exonic DNA shape its genetic landscape and define its metastatic potential.


Subject(s)
Genome-Wide Association Study , Melanoma/genetics , Uveal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , DNA Copy Number Variations , Eukaryotic Initiation Factor-1/genetics , Eukaryotic Initiation Factor-1/metabolism , Exons , Female , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Male , Melanocytes/pathology , Melanoma/diagnosis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Mutation , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Skin Neoplasms , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Uveal Neoplasms/diagnosis , Melanoma, Cutaneous Malignant
6.
Front Immunol ; 7: 326, 2016.
Article in English | MEDLINE | ID: mdl-27625650

ABSTRACT

While T cell-based immunotherapies are steadily improving, there are still many patients who progress, despite T cell-infiltrated tumors. Emerging evidence suggests that T cells themselves may provoke immune escape of cancer cells. Here, we describe a well-controlled co-culture system for studying the dynamic T cell - cancer cell interplay, using human melanoma as a model. We explain starting material, controls, and culture parameters to establish reproducible and comparable cultures with highly heterogeneous tumor cells. Low passage melanoma cell lines and melanoma-specific CD8+ T cell clones generated from patient blood were cultured together for up to 3 days. Living melanoma cells were isolated from the co-culture system by fluorescence-activated cell sorting. We demonstrate that the characterization of isolated melanoma cells is feasible using flow cytometry for protein expression analysis as well as an Agilent whole human genome microarray and the NanoString technology for differential gene expression analysis. In addition, we identify five genes (ALG12, GUSB, RPLP0, KRBA2, and ADAT2) that are stably expressed in melanoma cells independent of the presence of T cells or the T cell-derived cytokines IFNγ and TNFα. These genes are essential for correct normalization of gene expression data by NanoString. Further to the characterization of melanoma cells after exposure to CTLs, this experimental system might be suitable to answer a series of questions, including how the affinity of CTLs for their target antigen influences the melanoma cell response and whether CTL-induced gene expression changes in melanoma cells are reversible. Taken together, our human T cell - melanoma cell culture system is well suited to characterize immune-related mechanisms in cancer cells.

7.
Nano Lett ; 16(9): 5373-7, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27490749

ABSTRACT

According to the American skin cancer foundation, there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung, and colon each year, and malignant melanoma represents its deadliest form. About 50% of all cases are characterized by a particular mutation BRAF(V600E) in the BRAF (Rapid Acceleration of Fibrosarcoma gene B) gene. Recently developed highly specific drugs are able to fight BRAF(V600E) mutated tumors but require diagnostic tools for fast and reliable mutation detection to warrant treatment efficiency. We completed a preliminary clinical trial applying cantilever array sensors to demonstrate identification of a BRAF(V600E) single-point mutation using total RNA obtained from biopsies of metastatic melanoma of diverse sources (surgical material either frozen or fixated with formalin and embedded in paraffin). The method is faster than the standard Sanger or pyrosequencing methods and comparably sensitive as next-generation sequencing. Processing time from biopsy to diagnosis is below 1 day and does not require PCR amplification, sequencing, and labels.


Subject(s)
DNA Mutational Analysis , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/genetics , Biopsy , Humans , Mutation
8.
Cancer Immunol Res ; 4(6): 552-61, 2016 06.
Article in English | MEDLINE | ID: mdl-27045022

ABSTRACT

Melanoma is one of the major cancer types for which new immune-based cancer treatments have achieved promising results. However, anti-PD-1 and anti-CTLA-4 therapies are effective only in some patients. Hence, predictive molecular markers for the development of clinical strategies targeting immune checkpoints are needed. Using The Cancer Genome Atlas (TCGA) RNAseq data, we found that expression of ESRP1, encoding a master splicing regulator in the epithelial-mesenchymal transition (EMT), was inversely correlated with tumor-associated immune cytolytic activity. That association holds up across multiple TCGA tumor types, suggesting a link between tumor EMT status and infiltrating lymphocyte activity. In melanoma, ESRP1 mainly exists in a melanocyte-specific truncated form transcribed from exon 13. This was validated by analyzing CCLE cell line data, public CAGE data, and RT-PCR in primary cultured melanoma cell lines. Based on ESRP1 expression, we divided TCGA melanoma cases into ESRP1-low, -truncated, and -full-length groups. ESRP1-truncated tumors comprise approximately two thirds of melanoma samples and reside in an apparent transitional state between epithelial and mesenchymal phenotypes. ESRP1 full-length tumors express epithelial markers and constitute about 5% of melanoma samples. In contrast, ESRP1-low tumors express mesenchymal markers and are high in immune cytolytic activity as well as PD-L2 and CTLA-4 expression. Those tumors are associated with better patient survival. Results from our study suggest a path toward the use of ESRP1 and other EMT markers as informative biomarkers for immunotherapy. Cancer Immunol Res; 4(6); 552-61. ©2016 AACR.


Subject(s)
Alternative Splicing , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Melanoma/metabolism , RNA-Binding Proteins/metabolism , Biomarkers, Tumor/genetics , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Melanocytes/metabolism , Melanoma/genetics , Melanoma/immunology , Melanoma/secondary , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Prognosis , RNA-Binding Proteins/genetics , Transcriptome
10.
Clin Cancer Res ; 22(6): 1330-40, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26500235

ABSTRACT

PURPOSE: Cancer vaccines aim to generate and maintain antitumor immune responses. We designed a phase I/IIa clinical trial to test a vaccine formulation composed of Montanide ISA-51 (Incomplete Freund's Adjuvant), LAG-3Ig (IMP321, a non-Toll like Receptor agonist with adjuvant properties), and five synthetic peptides derived from tumor-associated antigens (four short 9/10-mers targeting CD8 T-cells, and one longer 15-mer targeting CD4 T-cells). Primary endpoints were safety and T-cell responses. EXPERIMENTAL DESIGN: Sixteen metastatic melanoma patients received serial vaccinations. Up to nine injections were subcutaneously administered in three cycles, each with three vaccinations every 3 weeks, with 6 to 14 weeks interval between cycles. Blood samples were collected at baseline, 1-week after the third, sixth and ninth vaccination, and 6 months after the last vaccination. Circulating T-cells were monitored by tetramer staining directly ex vivo, and by combinatorial tetramer and cytokine staining on in vitro stimulated cells. RESULTS: Side effects were mild to moderate, comparable to vaccines with Montanide alone. Specific CD8 T-cell responses to at least one peptide formulated in the vaccine preparation were found in 13 of 16 patients. However, two of the four short peptides of the vaccine formulation did not elicit CD8 T-cell responses. Specific CD4 T-cell responses were found in all 16 patients. CONCLUSIONS: We conclude that vaccination with IMP321 is a promising and safe strategy for inducing sustained immune responses, encouraging further development for cancer vaccines as components of combination therapies.


Subject(s)
Antigens, CD/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Peptides/immunology , Antigens, CD/chemistry , Antigens, Neoplasm/immunology , Biomarkers , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/administration & dosage , Cancer Vaccines/adverse effects , Combined Modality Therapy , Female , Humans , Lymphocyte Count , MART-1 Antigen/immunology , Male , Melanoma/pathology , Treatment Outcome , Vaccination , Lymphocyte Activation Gene 3 Protein
11.
Swiss Med Wkly ; 145: w14092, 2015.
Article in English | MEDLINE | ID: mdl-25664868

ABSTRACT

Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner.


Subject(s)
Biosensing Techniques/methods , Early Detection of Cancer/methods , Nanotechnology/methods , Biomarkers, Tumor/analysis , Humans , Microscopy, Atomic Force
12.
Nanomedicine ; 10(1): 141-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23891982

ABSTRACT

The stiffness of tumor cells varies during cancer progression. In particular, metastatic carcinoma cells analyzed by Atomic Force Microscopy (AFM) appear softer than non-invasive and normal cells. Here we examined by AFM how the stiffness of melanoma cells varies during progression from non-invasive Radial Growth Phase (RGP) to invasive Vertical Growth Phase (VGP) and to metastatic tumors. We show that transformation of melanocytes to RGP and to VGP cells is characterized by decreased cell stiffness. However, further progression to metastatic melanoma is accompanied by increased cell stiffness and the acquisition of higher plasticity by tumor cells, which is manifested by their ability to greatly augment or reduce their stiffness in response to diverse adhesion conditions. We conclude that increased plasticity, rather than decreased stiffness as suggested for other tumor types, is a marker of melanoma malignancy. These findings advise caution about the potential use of AFM for melanoma diagnosis. FROM THE CLINICAL EDITOR: This study investigates the changes to cellular stiffness in metastatic melanoma cells examined via atomic force microscopy. The results demonstrate that increased plasticity is a marker of melanoma malignancy, as opposed to decreased stiffness.


Subject(s)
Melanocytes/pathology , Melanoma/pathology , Skin Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Humans , Melanoma/diagnosis , Microscopy, Atomic Force , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology , Skin Neoplasms/diagnosis
13.
Clin Cancer Res ; 19(20): 5749-57, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23948972

ABSTRACT

PURPOSE: To investigate the mechanism(s) of resistance to the RAF-inhibitor vemurafenib, we conducted a comprehensive analysis of the genetic alterations occurring in metastatic lesions from a patient with a BRAF(V600E)-mutant cutaneous melanoma who, after a first response, underwent subsequent rechallenge with this drug. EXPERIMENTAL DESIGN: We obtained blood and tissue samples from a patient diagnosed with a BRAF(V600E)-mutant cutaneous melanoma that was treated with vemurafenib and achieved a near-complete response. At progression, he received additional lines of chemo/immunotherapy and was successfully rechallenged with vemurafenib. Exome and RNA sequencing were conducted on a pretreatment tumor and two subcutaneous resistant metastases, one that was present at baseline and previously responded to vemurafenib (PV1) and one that occurred de novo after reintroduction of the drug (PV2). A culture established from PV1 was also analyzed. RESULTS: We identified two NRAS-activating somatic mutations, Q61R and Q61K, affecting two main subpopulations in the metastasis PV1 and a BRAF alternative splicing, involving exons 4-10, in the metastasis PV2. These alterations, known to confer resistance to RAF inhibitors, were tumor-specific, mutually exclusive, and were not detected in pretreatment tumor samples. In addition, the oncogenic PIK3CA(H1047R) mutation was detected in a subpopulation of PV1, but this mutation did not seem to play a major role in vemurafenib resistance in this metastasis. CONCLUSIONS: This work describes the coexistence within the same patient of different molecular mechanisms of resistance to vemurafenib affecting different metastatic sites. These findings have direct implications for the clinical management of BRAF-mutant melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/genetics , Indoles/pharmacology , Melanoma/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Sulfonamides/pharmacology , Adult , Alternative Splicing , Amino Acid Substitution , Antineoplastic Agents/therapeutic use , Codon , Disease Progression , Exome , Gene Expression Profiling , Gene Order , High-Throughput Nucleotide Sequencing , Humans , Indoles/therapeutic use , Male , Melanoma/drug therapy , Melanoma/pathology , Neoplasm Metastasis , Skin Neoplasms , Sulfonamides/therapeutic use , Vemurafenib , Melanoma, Cutaneous Malignant
14.
Pigment Cell Melanoma Res ; 25(4): 482-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22594792

ABSTRACT

Understanding the molecular aberrations involved in the development and progression of metastatic melanoma (MM) is essential for a better diagnosis and targeted therapy. We identified breast cancer suppressor candidate-1 (BCSC-1) as a novel tumor suppressor in melanoma. BCSC-1 expression is decreased in human MM, and its ectopic expression in MM-derived cell lines blocks tumor formation in vivo and melanoma cell proliferation in vitro while increasing cell migration. We demonstrate that BCSC-1 binds to Sox10, which down regulates MITF, and results in a switch of melanoma cells from a proliferative to a migratory phenotype. In conclusion, we have identified BCSC-1 as a tumor suppressor in melanoma and as a novel regulator of the MITF pathway.


Subject(s)
Down-Regulation/genetics , Melanoma/genetics , Microphthalmia-Associated Transcription Factor/genetics , Neoplasm Proteins/metabolism , Skin Neoplasms/genetics , Amino Acid Sequence , Animals , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Melanoma/pathology , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Molecular Sequence Data , Neoplasm Proteins/chemistry , Protein Binding , SOXE Transcription Factors/metabolism , Skin Neoplasms/pathology , Tumor Suppressor Proteins/metabolism
15.
PLoS One ; 7(2): e30852, 2012.
Article in English | MEDLINE | ID: mdl-22347406

ABSTRACT

Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Receptors, KIR/biosynthesis , T-Cell Antigen Receptor Specificity/immunology , Antibodies, Blocking/therapeutic use , Antigens, Neoplasm , CD8-Positive T-Lymphocytes/cytology , Hepatitis A Virus Cellular Receptor 2 , Humans , Immunologic Factors , Membrane Proteins/immunology , Neoplasms/immunology , Neoplasms/pathology , Receptors, Immunologic/immunology , Receptors, KIR/immunology
16.
Nat Genet ; 44(2): 133-9, 2011 Dec 25.
Article in English | MEDLINE | ID: mdl-22197931

ABSTRACT

We performed exome sequencing to detect somatic mutations in protein-coding regions in seven melanoma cell lines and donor-matched germline cells. All melanoma samples had high numbers of somatic mutations, which showed the hallmark of UV-induced DNA repair. Such a hallmark was absent in tumor sample-specific mutations in two metastases derived from the same individual. Two melanomas with non-canonical BRAF mutations harbored gain-of-function MAP2K1 and MAP2K2 (MEK1 and MEK2, respectively) mutations, resulting in constitutive ERK phosphorylation and higher resistance to MEK inhibitors. Screening a larger cohort of individuals with melanoma revealed the presence of recurring somatic MAP2K1 and MAP2K2 mutations, which occurred at an overall frequency of 8%. Furthermore, missense and nonsense somatic mutations were frequently found in three candidate melanoma genes, FAT4, LRP1B and DSC1.


Subject(s)
Exome/genetics , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 2/genetics , Melanoma/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mutation , Skin Neoplasms/genetics , Base Sequence , Cadherins/genetics , Cell Line, Tumor , Cohort Studies , DNA Repair/genetics , Desmocollins , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 2/antagonists & inhibitors , Molecular Sequence Data , Proto-Oncogene Proteins B-raf/genetics , Receptors, LDL/genetics , Tumor Suppressor Proteins/genetics , Ultraviolet Rays/adverse effects
17.
PLoS One ; 6(4): e18369, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21494657

ABSTRACT

Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.


Subject(s)
DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Genes, Neoplasm/genetics , Melanoma/genetics , Melanoma/pathology , Signal Transduction/genetics , Cell Line, Tumor , Comparative Genomic Hybridization , Databases, Genetic , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Neoplasm Metastasis , Polymorphism, Single Nucleotide/genetics , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Cancer Res ; 71(5): 1607-14, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21343393

ABSTRACT

The discovery of a targeted therapeutic compound along with its companion predictive biomarker is a major goal of clinical development for a personalized anticancer therapy to date. Here we present evidence of the predictive value of TLR3 expression by tumor cells for the efficacy of Poly (A:U) dsRNA in 194 breast cancer patients enrolled in a randomized clinical trial. Adjuvant treatment with double-stranded RNA (dsRNA) was associated with a significant decrease in the risk of metastatic relapse in TLR3 positive but not in TLR3-negative breast cancers. Moreover, we show the functional relevance of TLR3 expression by human tumor cells for the antitumor effects mediated by dsRNA in several preclinical mouse models carried out in immunocompromised animals. These 2 independent lines of evidence relied upon the generation of a novel tool, an anti-TLR3 antibody (40F9.6) validated for routine detection of TLR3 expression on paraffin-embedded tissues. Altogether, these data suggest that dsRNA mediates its therapeutic effect through TLR3 expressed on tumor cells, and could therefore represent an effective targeted treatment in patients with TLR3-positive cancers.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/analysis , Breast Neoplasms/drug therapy , RNA, Double-Stranded/therapeutic use , Toll-Like Receptor 3/biosynthesis , Animals , Antibody Specificity , Breast Neoplasms/metabolism , Female , Humans , Immunohistochemistry , Mice , Mice, Inbred BALB C , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Retrospective Studies , Toll-Like Receptor 3/analysis
19.
Int J Cancer ; 128(11): 2625-34, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-20715104

ABSTRACT

Cancer-testis (CT) antigens comprise families of tumor-associated antigens that are immunogenic in patients with various cancers. Their restricted expression makes them attractive targets for immunotherapy. The aim of this study was to determine the expression of several CT genes and evaluate their prognostic value in head and neck squamous cell carcinoma (HNSCC). The pattern and level of expression of 12 CT genes (MAGE-A1, MAGE-A3, MAGE-A4, MAGE-A10, MAGE-C2, NY-ESO-1, LAGE-1, SSX-2, SSX-4, BAGE, GAGE-1/2, GAGE-3/4) and the tumor-associated antigen encoding genes PRAME, HERV-K-MEL, and NA-17A were evaluated by RT-PCR in a panel of 57 primary HNSCC. Over 80% of the tumors expressed at least 1 CT gene. Coexpression of three or more genes was detected in 59% of the patients. MAGE-A4 (60%), MAGE-A3 (51%), PRAME (49%) and HERV-K-MEL (42%) were the most frequently expressed genes. Overall, the pattern of expression of CT genes indicated a coordinate regulation; however there was no correlation between expression of MAGE-A3/A4 and BORIS, a gene whose product has been implicated in CT gene activation. The presence of MAGE-A and NY-ESO-1 proteins was verified by immunohistochemistry. Analysis of the correlation between mRNA expression of CT genes with clinico-pathological characteristics and clinical outcome revealed that patients with tumors positive for MAGE-A4 or multiple CT gene expression had a poorer overall survival. Furthermore, MAGE-A4 mRNA positivity was prognostic of poor outcome independent of clinical parameters. These findings indicate that expression of CT genes is associated with a more malignant phenotype and suggest their usefulness as prognostic markers in HNSCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/genetics , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/metabolism , Female , Head and Neck Neoplasms/metabolism , Humans , Immunoenzyme Techniques , Male , Middle Aged , Neoplasm Proteins/metabolism , Prognosis , Prospective Studies , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
PLoS One ; 5(9)2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20862285

ABSTRACT

BACKGROUND: Cancer/testis (CT) genes are expressed only in the germ line and certain tumors and are most frequently located on the X-chromosome (the CT-X genes). Amongst the best studied CT-X genes are those encoding several MAGE protein families. The function of MAGE proteins is not well understood, but several have been shown to potentially influence the tumorigenic phenotype. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a mutational analysis of coding regions of four CT-X MAGE genes, MAGEA1, MAGEA4, MAGEC1, MAGEC2 and the ubiquitously expressed MAGEE1 in human melanoma samples. We first examined cell lines established from tumors and matching blood samples from 27 melanoma patients. We found that melanoma cell lines from 37% of patients contained at least one mutated MAGE gene. The frequency of mutations in the coding regions of individual MAGE genes varied from 3.7% for MAGEA1 and MAGEA4 to 14.8% for MAGEC2. We also examined 111 fresh melanoma samples collected from 86 patients. In this case, samples from 32% of the patients exhibited mutations in one or more MAGE genes with the frequency of mutations in individual MAGE genes ranging from 6% in MAGEA1 to 16% in MAGEC1. SIGNIFICANCE: These results demonstrate for the first time that the MAGE gene family is frequently mutated in melanoma.


Subject(s)
Antigens, Neoplasm/genetics , Melanoma/genetics , Mutation , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Melanoma-Specific Antigens , Middle Aged , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...